Chinese Optics Letters, Volume. 20, Issue 1, 011101(2022)

Derivative ghost imaging

Zhe Yang, Kexin Huang, Machi Zhang, Dong Ruan, and Junlin Li*
Author Affiliations
  • State Key Laboratory of Low-dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
  • show less
    References(50)

    [1] T. B. Pittman, Y. H. Shih, D. V. Strekalov, A. V. Sergienko. Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A, 52, R3429(1995).

    [2] R. S. Bennink, S. J. Bentley, R. W. Boyd. ‘Two-photon’ coincidence imaging with a classical source. Phys. Rev. Lett., 89, 113601(2002).

    [3] A. Gatti, E. Brambilla, M. Bache, L. A. Lugiato. Ghost imaging with thermal light: comparing entanglement and classical correlation. Phys. Rev. Lett., 93, 093602(2004).

    [4] F. Ferri, D. Magatti, A. Gatti, M. Bache, E. A. Brambilla, L. A. Lugiato. High-resolution ghost image and ghost diffraction experiments with thermal light. Phys. Rev. Lett., 94, 183602(2005).

    [5] D. Z. Cao, J. Xiong, K. Wang. Geometrical optics in correlated imaging systems. Phys. Rev. A, 71, 013801(2005).

    [6] J. H. Shapiro. Computational ghost imaging. Phys. Rev. A, 78, 061802(2008).

    [7] O. Katz, B. Yaron, Y. Silberberg. Compressive ghost imaging. Appl. Phys. Lett., 95, 131110(2009).

    [8] G. M. Gibson, S. D. Johnson, M. Padgett. Single-pixel imaging 12 years on: a review. Opt. Express, 28, 28190(2020).

    [9] Z. Yang, O. S. Magana-Loaiza, M. Mirhosseini, Y. Zhou, B. Gao, L. Gao, S. M. H. Rafsanjani, G. L. Long, R. W. Boyd. Digital spiral object identification using random light. Light: Sci. Appl., 6, e17013(2017).

    [10] L. Wang, S. Zhao. Super resolution ghost imaging based on Fourier spectrum acquisition. Opt. Laser. Eng., 139, 106473(2021).

    [11] X. Zhang, Y. H. He, L. A. Wu, L. M. Chen, B. B. Wang. Tabletop x-ray ghost imaging with ultra-low radiation. Optica, 5, 374(2018).

    [12] N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman, M. J. Padgett. Single-pixel infrared and visible microscope. Optica, 1, 285(2014).

    [13] J. Zhao, E. Yiwen, K. Williams, X. C. Zhang, R. Boyd. Spatial sampling of terahertz fields with sub-wavelength accuracy via probe beam encoding. Light: Sci. Appl., 8, 55(2019).

    [14] G. Wang, H. Zheng, Z. Tang, Y. He, Y. Zhou, H. Chen, J. Liu, Y. Yuan, F. Li, Z. Xu. Naked-eye ghost imaging via photoelectric feedback. Chin. Opt. Lett., 18, 091101(2020).

    [15] J. Gu, S. Sun, Y. Xu, H. Lin, W. Liu. Feedback ghost imaging by gradually distinguishing and concentrating onto the edge area. Chin. Opt. Lett., 19, 041102(2021).

    [16] L. Basano, P. Ottonello. Experiment in lensless ghost imaging with thermal light. Appl. Phys. Lett., 89, 091109(2006).

    [17] Z. Yang, L. Zhao, X. Zhao, W. Qin, J. Li. Lensless ghost imaging through the strongly scattering medium. Chin. Phys. B, 25, 024202(2016).

    [18] M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, M. J. Padgett. Single-pixel three-dimensional imaging with time-based depth resolution. Nat. Commun., 7, 12010(2016).

    [19] W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, S. Han. Three-dimensional ghost imaging lidar via sparsity constraint. Sci. Rep., 6, 26133(2016).

    [20] Y. Wang, H. Chen, W. Jiang, X. Li, X. Chen, X. Meng, P. Tian, B. Sun. Optical encryption for visible light communication based on temporal ghost imaging with a micro-LED. Opt. Laser. Eng., 134, 106290(2020).

    [21] F. Ferri, D. Magatti, L. A. Lugiato, A. Gatti. Differential ghost imaging. Phys. Rev. Lett., 104, 253603(2010).

    [22] X. R. Yao, W. K. Yu, X. F. Liu, L. Z. Li, M. F. Li, L. A. Wu, G. J. Zhai. Iterative denoising of ghost imaging. Opt. Express, 22, 24268(2014).

    [23] S. S. Hodgman, W. Bu, S. B. Mann, R. I. Khakimov, A. G. Truscott. Higher-order quantum ghost imaging with ultracold atoms. Phys. Rev. Lett., 122, 233601(2019).

    [24] C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, W. J. Padilla. Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photon., 8, 605(2014).

    [25] Z. Zhang, X. Ma, J. Zhong. Single-pixel imaging by means of Fourier spectrum acquisition. Nat. Commun., 6, 6225(2015).

    [26] K. M. Czajkowski, A. Pastuszczak, R. Kotynski. Real-time single-pixel video imaging with Fourier domain regularization. Opt. Express, 26, 20009(2018).

    [27] L. Wang, S. Zhao. Fast reconstructed and high-quality ghost imaging with fast Walsh–Hadamard transform. Photon. Res., 4, 240(2016).

    [28] Z. H. Xu, W. Chen, J. Penuelas, M. J. Padgett, M. J. Sun. 1000 fps computational ghost imaging using LED-based structured illumination. Opt. Express, 26, 2427(2018).

    [29] J. Liu, J. Zhu, C. Lu, S. Huang. High-quality quantum-imaging algorithm and experiment based on compressive sensing. Opt. Lett., 35, 1206(2010).

    [30] J. Liu. On the recovery conditions for practical ghost imaging with AMP algorithm. Opt. Express, 26, 20519(2018).

    [31] H. Wu, R. Wang, G. Zhao, H. Xiao, X. Zhang. Sub-Nyquist computational ghost imaging with deep learning. Opt. Express, 28, 3846(2020).

    [32] F. Wang, H. Wang, H. Wang, G. Li, G. Situ. Learning from simulation: an end-to-end deep-learning approach for computational ghost imaging. Opt. Express, 27, 25560(2019).

    [33] H. Wu, G. Zhao, M. Chen, L. Cheng, H. Xiao, L. Xu, D. Wang, J. Liang, Y. Xu. Hybrid neural network-based adaptive computational ghost imaging. Opt. Laser. Eng., 140, 106529(2021).

    [34] H. Wu, R. Wang, G. Zhao, H. Xiao, J. Liang, D. Wang, X. Tian, L. Cheng, X. Zhang. Deep-learning denoising computational ghost imaging. Opt. Laser. Eng., 134, 106183(2020).

    [35] T. Bian, Y. Yi, J. Hu, Y. Zhang, Y. Wang, L. Gao. A residual-based deep learning approach for ghost imaging. Sci. Rep., 10, 1(2020).

    [36] Z. Yang, W. X. Zhang, Y. P. Liu, D. Ruan, J. L. Li. Instant ghost imaging: algorithm and on-chip implementation. Opt. Express, 28, 3607(2020).

    [37] Z. Yang, W. X. Zhang, M. C. Zhang, D. Ruan, J. L. Li. Instant ghost imaging: improving robustness for ghost imaging on optical background noise. OSA Continuum, 3, 391(2020).

    [38] M. J. Sun, H. Y. Wang, J. Y. Huang. Improving the performance of computational ghost imaging by using a quadrant detector and digital micro-scanning. Sci. Rep., 9, 4105(2019).

    [39] R. H. Brown, R. Q. Twiss. Correlation between photons in two coherent beams of light. Nature, 177, 27(1956).

    [40] R. H. Brown, R. Q. Twiss. A test of a new type of stellar interferometer on sirius. Nature, 178, 1046(1956).

    [41] R. H. Miller. Measurement of stellar diameters. Science, 153, 581(1966).

    [42] G. Baym. The physics of Hanbury Brown–Twiss intensity interferometry: from stars to nuclear collisions. Acta Phys. Pol. B, 29, 1839(1998).

    [43] E. Frodermann, U. Heinz. Photon Hanbury Brown–Twiss interferometry for noncentral heavy-ion collisions. Phys. Rev. C, 80, 044903(2009).

    [44] C. Plumberg, U. Heinz. Probing the properties of event-by-event distributions in Hanbury Brown–Twiss radii. Phys. Rev. C, 92, 044906(2015).

    [45] M. Schellekens, R. Hoppeler, A. Perrin, J. V. Gomes, D. Boiron, A. Aspect, C. I. Westbrook. Hanbury Brown Twiss effect for ultracold quantum gases. Science, 310, 648(2005).

    [46] H. Cayla, S. Butera, C. Carcy, A. Tenart, G. Hercé, M. Mancini, A. Aspect, I. Carusotto, D. Clément. Hanbury Brown and Twiss bunching of phonons and of the quantum depletion in an interacting Bose gas. Phys. Rev. Lett., 125, 165301(2020).

    [47] Y. Bromberg, Y. Lahini, E. Small, Y. Silberberg. Hanbury Brown and Twiss interferometry with interacting photons. Nat. Photon., 4, 721(2010).

    [48] J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, M. J. Padgett. Quantum correlations in optical angle–orbital angular momentum variables. Science, 329, 662(2010).

    [49] S. Hong, R. Riedinger, I. Marinković, A. Wallucks, S. G. Hofer, R. A. Norte, M. Aspelmeyer, S. Gröblacher. Hanbury Brown and Twiss interferometry of single phonons from an optomechanical resonator. Science, 358, 203(2017).

    [50] T. Thomay, S. V. Polyakov, O. Gazzano, E. Goldschmidt, Z. D. Eldredge, T. Huber, V. Loo, G. S. Solomon. Simultaneous, full characterization of a single-photon state. Phys. Rev. X, 7, 041036(2017).

    Cited By

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    [1] Shaosheng Dai, Ziqiang He, Jinsong Liu.

    Tools

    Get Citation

    Copy Citation Text

    Zhe Yang, Kexin Huang, Machi Zhang, Dong Ruan, Junlin Li, "Derivative ghost imaging," Chin. Opt. Lett. 20, 011101 (2022)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems and Image Processing

    Received: May. 24, 2021

    Accepted: Aug. 17, 2021

    Posted: Aug. 19, 2021

    Published Online: Oct. 8, 2021

    The Author Email: Junlin Li (center@tsinghua.edu.cn)

    DOI:10.3788/COL202220.011101

    Topics