Infrared Technology, Volume. 46, Issue 11, 1261(2024)
Research Progress on the Formation Mechanism and Prevention of Black Spot in Organic Light-Emitting Devices
[1] [1] Turak A. Interfacial degradation in organic optoelectronics[J]. Rsc Advances, 2013, 3(18): 6188-6225.
[2] [2] Akkerman H B, Weijer P, Verstegen E, et al. Sub-micron pinhole detection in the cathode of organic light-emitting diodes[J]. Organic Electronics, 2017, 44: 263-270.
[3] [3] Lim S F, WANG W, Chua S J. Understanding dark spot formation and growth in organic light emitting devices by controlling pinhole size and shape[J]. Advanced Functional Materials, 2002, 12(8): 513-518.
[4] [4] TANG C W, VanSlyke S A. Organic electroluminescent diodes[J]. Applied Physics Letters, 1987, 51(12): 913-915.
[5] [5] HAN E M, Do L M, Yamamoto N, et al. Crystallization of organic thin films for electroluminescent devices[J]. Thin Solid Films, 1996, 273(1-2): 202-208.
[6] [6] Aziz H, Popovic Z, XIE S, et al. Humidity-induced crystallization of tris (8-hydroxyquinoline) aluminum layers in organic light-emitting devices[J]. Applied Physics Letters, 1998, 72(7): 756-758.
[7] [7] Do L M, Oyamada M, Koike A, et al. Morphological change in the degradation of Al electrode surfaces of electroluminescent devices by fluorescence microscopy and AFM[J]. Thin Solid Films, 1996, 273(1-2): 209-213.
[8] [8] Do L M, Han E M, Niidome Y, et al. Observation of degradation processes of Al electrodes in organic electroluminescence devices by electroluminescence microscopy, atomic force microscopy, scanning electron microscopy, and Auger electron spectroscopy[J]. Journal of Applied Physics, 1994, 76(9): 5118-5121.
[9] [9] Cumpston B H, Jensen K F. Electromigration of aluminum cathodes in polymer-based electroluminescent devices[J]. Applied Physics Letters, 1996, 69(25): 3941-3943.
[10] [10] Bulle-Lieuwma C W T, van de Weijer P. 3D-TOFSIMS characterization of black spots in polymer light emitting diodes[J]. Applied Surface Science, 2006, 252(19): 6597-6600.
[11] [11] Liew Y F, Aziz H, HU N X, et al. Investigation of the sites of dark spots in organic light-emitting devices[J]. Applied Physics Letters, 2000, 77(17): 2650-2652.
[12] [12] Sudheendran Swayamprabha S, Dubey D K, Yadav R A K, et al. Approaches for long lifetime organic light emitting diodes[J]. Advanced Science, 2021, 8(1): 2002254.
[13] [13] McElvain J, Antoniadis H, Hueschen M R, et al. Formation and growth of black spots in organic light-emitting diodes[J]. Journal of Applied Physics, 1996, 80(10): 6002-6007.
[14] [14] Azrain M M, Mansor M R, Fadzullah S, et al. Analysis of mechanisms responsible for the formation of dark spots in organic light emitting diodes (OLEDs): a review[J]. Synthetic Metals, 2018, 235: 160-175.
[15] [15] Kawaharada M, Ooishi M, Saito T, et al. Nuclei of dark spots in organic EL devices: detection by DFM and observation of the microstructure by TEM[J]. Synthetic Metals, 1997, 91(1-3): 113-116.
[16] [16] LIM S F, KE L, WANG W, et al. Correlation between dark spot growth and pinhole size in organic light-emitting diodes[J]. Applied Physics Letters, 2001, 78(15): 2116-2118.
[17] [17] SHUANG F L, WANG W, Chua S J. Degradation of organic light-emitting devices due to formation and growth of dark spots[J]. Materials Science and Engineering B, 2001, 85(2-3): 154-159.
[18] [18] WANG W, Lim S F, Chua S J. Bubble formation and growth in organic light-emitting diodes composed of a polymeric emitter and a calcium cathode[J]. Journal of Applied Physics, 2002, 91(9): 5712-5715.
[19] [19] Kolosov D, English D S, Bulovic V, et al. Direct observation of structural changes in organic light emitting devices during degradation[J]. Journal of Applied Physics, 2001, 90(7): 3242-3247.
[20] [20] Schaer M, F Nesch, Berner D, et al. Water vapor and oxygen degradation mechanisms in organic light emitting diodes[J]. Advanced Functional Materials, 2001, 11(2): 116-121.
[21] [21] Okada T, Yoshida A, Tsuji T. Dark spot growth and its acceleration factor in organic light-emitting diodes with single barrier structure[J]. Japanese Journal of Applied Physics, 2017, 56(6): 060305.
[22] [22] Scholz S, Kondakov D, Bjrn Lssem, et al. Degradation mechanisms and reactions in organic light-emitting devices[J]. Chemical Reviews, 2015, 115(16): 8449.
[23] [23] Van de Weijer P, Lu K, Janssen R R, et al. Mechanism of the operational effect of black spot growth in OLEDs[J]. Organic Electronics, 2016, 37: 155-162.
[24] [24] Van de Weijer P, Bouten P C P, Fledderus H, et al. Mechanistic study on black and grey spot growth in OLEDs performed on laser-ablated pinholes in the cathode[J]. Organic Electronics, 2017, 42: 59-65.
[25] [25] Papadimitrakopoulos F, ZHANG X M, Higginson K A. Chemical and morphological stability of aluminum tris (8-hydroxyquinoline)(Alq/sub 3/): effects in light-emitting devices[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1998, 4(1): 49-57.
[26] [26] Png Ruiqi, Chia Perqjon, Sivaramakrishnan Sankaran, et al. Electromigration of the conducting polymer in organic semiconductor devices and its stabilization by cross-linking[J]. Applied Physics Letters, 2007, 91(1): 13511-13511.
[27] [27] Fujihira M, Do L M, Koike A, et al. Growth of dark spots by interdiffusion across organic layers in organic electroluminescent devices[J]. Applied Physics Letters, 1996, 68(13): 1787-1789.
[28] [28] Kim S Y, Kim K Y, Tak Y H, et al. Dark spot formation mechanism in organic light emitting diodes[J]. Applied Physics Letters, 2006, 89(13): 132108.
[29] [29] Melpignano P, Baron-Toaldo A, Biondo V, et al. Mechanism of dark-spot degradation of organic light-emitting devices[J]. Applied Physics Letters, 2005, 86(4): 041105.
[30] [30] GAO L, Kerr J B, Johnson S. Dark spot formation relative to ITO surface roughness for polyfluorene devices[J]. Synthetic Metals, 2004, 144(1): 1-6.
[31] [31] Czerw R, Carroll D L, Woo H S, et al. Nanoscale observation of failures in organic light-emitting diodes[J]. Journal of Applied Physics, 2004, 96(1): 641-644.
[32] [32] ZHOU X, HE J, LIAO L, et al. Real-time observation of temperature rise and thermal breakdown processes in organic LEDs using an IR imaging and analysis system[J]. Advanced Materials, 12(4): 265-269.
[33] [33] WU C C, WU C I, Sturm J C J, et al. Surface modification of indium tin oxide by plasma treatment: an effective method to improve the efficiency, brightness, and reliability of organic light emitting devices[J]. Applied Physics Letters, 1997, 70(11): 1348-1350.
[34] [34] LU H T, Yokoyama M. Plasma preparation on indium-tin-oxide anode surface for organic light emitting diodes[J]. Journal of Crystal Growth, 2004, 260(1/2): 186-190.
[35] [35] Mason M G, HUNG L S, TANG C W, et al. Characterization of treated indium-tin-oxide surfaces used in electroluminescent devices[J]. Journal of Applied Physics, 1999, 86(3): 1688-1692.
[36] [36] Phatak R, Tsui T Y, Aziz H. Dependence of dark spot growth on cathode/organic interfacial adhesion in organic light emitting devices[J]. Journal of Applied Physics, 2012, 111(5): 756.
[37] [37] Ryu S Y, Noh J H, Hwang B H, et al. Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode[J]. Applied Physics Letters, 2008, 92(2): 15.
[38] [38] Grandin H M, Griffiths K, Norton P R. Plasma treatment of the Mg:Ag/tris-(8-hydroxyquinoline) aluminum interface in OLEDs: effects on adhesion and performance[J]. Applied Surface Science, 2004, 230: 163-171.
[39] [39] Azrain M M, Mansor M R, Omar G, et al. Effect of high thermal stress on the organic light emitting diodes (OLEDs) performances[J]. Synthetic Metals, 2019, 247: 191-201.
[40] [40] McEwan J A, Clulow A J, Nelson A, et al. Dependence of organic interlayer diffusion on glass-transition temperature in OLEDs[J]. ACS Applied Materials & Interfaces, 2017, 9(16): 14153-14161.
[41] [41] Nenna G, Flaminio G, Fasolino T, et al. A study on thermal degradation of organic LEDs using IR imaging[C]//Macromolecular Symposia, 2007, 247(1): 326-332.
[42] [42] YIN S W, SHUAI Z, WANG Y. A quantitative structure-property relationship study of the glass transition temperature of OLED materials[J]. Journal of Chemical Information and Computer Sciences, 2003, 43(3): 970-977.
[43] [43] Smith Arthur R G, Ruggles Jeremy L, Cavaye Hamish, et al. Investigating morphology and stability of fac-tris (2-phenylpyridyl)iridium(III) films for OLEDs[J]. Advanced Functional Materials, 2011, 21(12): 2225-2231.
[44] [44] Davidson Hall T, Aziz H. A comparison of the effect of joule heating vs thermal annealing on the morphology of typical hole transport layers in organic light emitting devices[C]//Organic Light Emitting Materials and Devices XIX of SPIE, 2015, 9566: 140-146.
[45] [45] Slyke S V, CHEN C H, TANG C W. Organic electroluminescent devices with improved stability[J]. Applied Physics Letters, 1998, 69(15): 2160-2162.
[46] [46] Carrard M, Goncalves C S, SI A L, et al. Improved stability of interfaces in organic light emitting diodes with high Tg materials and self-assembled monolayers[J]. Thin Solid Films 1999, 352: 189.
[47] [47] Cho H Y, Park L S, Han Y S, et al. High-Tg N-Triarylamine derivatives as a hole injecting layer in organic light-emitting diodes[J]. Molecular Crystals and Liquid Crystals, 2009, 499(1): 323-332.
[48] [48] Liew Y F, ZHU F, CHUA S J. Effect of organic layer combination on dark spot formation in organic light emitting devices[J]. Chemical Physics Letters, 2004, 394(4-6): 275-279.
[49] [49] Seo H K, Park M H, Kim Y H, et al. Laminated graphene films for flexible transparent thin film encapsulation[J]. ACS Applied Materials & Interfaces, 2016, 8(23): 14725-14731.
[50] [50] Wegler B, Schmidt O, Hensel B. Influence of PEDOT: PSS on the effectiveness of barrier layers prepared by atomic layer deposition in organic light emitting diodes[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2015, 33(1): 01A147.
[51] [51] KIM E, HAN Y, KIM W, et al. Thin film encapsulation for organic light emitting diodes using a multi-barrier composed of MgO prepared by atomic layer deposition and hybrid materials[J]. Organic Electronics, 2013, 14(7):1737-1743.
[52] [52] LI Y, XIONG Y, YANG H, et al. Thin film encapsulation for the organic light-emitting diodes display via atomic layer deposition[J]. Journal of Materials Research, 2020, 35(7): 681-700.
[53] [53] Yersak A S, Lee Y C. Probabilistic distributions of pinhole defects in atomic layer deposited films on polymeric substrates[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2016, 34(1): 01A149.
[54] [54] Uchida H, Yamashita M. Pinhole defect evaluation of TiN films prepared by dry coating process[J]. Vacuum, 2000, 59(1): 321-329.
[55] [55] Miikkulainen V, Leskel M, Ritala M, et al. Crystallinity of inorganic films grown by atomic layer deposition: overview and general trends[J]. Journal of Applied Physics, 2013, 113(2): 2.
[56] [56] WAN Z, ZHANG T F, LEE H B R, et al. Improved corrosion resistance and mechanical properties of CrN hard coatings with an atomic layer deposited Al2O3 interlayer[J]. ACS Applied Materials & Interfaces, 2015, 7(48): 26716-26725.
[57] [57] Jen S H, Bertrand J A, George S M. Critical tensile and compressive strains for cracking of Al2O3 films grown by atomic layer deposition[J]. Journal of Applied Physics, 2011, 109(8): 084305.
[58] [58] Ylivaara O M E, LIU X, Kilpi L, et al. Aluminum oxide from trimethylaluminum and water by atomic layer deposition: the temperature dependence of residual stress, elastic modulus, hardness and adhesion[J]. Thin Solid Films, 2014, 552: 124-135.
[59] [59] Lewis J. Material challenge for flexible organic devices[J]. Materials Today, 2006, 9(4): 38-45.
[60] [60] Jen S H, George S M, McLean R S, et al. Alucone interlayers to minimize stress caused by thermal expansion mismatch between Al2O3 films and Teflon substrates[J]. ACS Applied Materials & Interfaces, 2013, 5(3): 1165-1173.
[61] [61] Garca A, lvarez S, Riera F, et al. Water and hexane permeate flux through organic and ceramic membranes: effect of pretreatment on hexane permeate flux[J]. Journal of membrane science, 2005, 253(1-2): 139-147.
[62] [62] Carcia P F, McLean R S, Reilly M H, et al. Ca test of Al2O3 gas diffusion barriers grown by atomic layer deposition on polymers[J]. Applied Physics Letters, 2006, 89(3): 913.
[63] [63] Maindron T, Jullien T, Andr A. Defect analysis in low temperature atomic layer deposited Al2O3 and physical vapor deposited SiO barrier films and combination of both to achieve high quality moisture barriers[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2016, 34(3): 031513.
[64] [64] HAN Y C, KIM E, KIM W, et al. A flexible moisture barrier comprised of a SiO2-embedded organic–inorganic hybrid nanocomposite and Al2O3 for thin-film encapsulation of OLEDs[J]. Organic Electronics, 2013, 14(6): 1435-1440.
[65] [65] Choi H, Shin S, Jeon H, et al. Fast spatial atomic layer deposition of Al2O3 at low temperature (<100℃) as a gas permeation barrier for flexible organic light-emitting diode displays[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2016, 34(1): 01A121.
[66] [66] Rckerl A, Zeisel R, Mandl M, et al. Characterization and prevention of humidity related degradation of atomic layer deposited Al2O3[J]. Journal of Applied Physics, 2017, 121(2): 025306.
[67] [67] Carcia P F, McLean R S, Groner M D, et al. Gas diffusion ultrabarriers on polymer substrates using Al2O3 atomic layer deposition and SiN plasma-enhanced chemical vapor deposition[J]. Journal of Applied Physics, 2009, 106(2): 023533.
[68] [68] Singh A K, Graham S. Ultrabarrier films for packaging flexible electronics: examining the role of thin-film technology[J]. IEEE Nanotechnology Magazine, 2018, 13(1): 30-36.
[69] [69] KIM L H, JEONG Y J, AN T K, et al. Optimization of Al2O3/TiO2 nanolaminate thin films prepared with different oxide ratios, for use in organic light-emitting diode encapsulation, via plasma-enhanced atomic layer deposition[J]. Physical Chemistry Chemical Physics, 2016, 18(2): 1042-1049.
[70] [70] Behrendt A, Meyer J, van de Weijer P, et al. Stress management in thin-film gas-permeation barriers[J]. ACS Applied Materials & Interfaces, 2016, 8(6): 4056-4061.
[71] [71] Meyer J, Schneidenbach D, Winkler T, et al. Reliable thin film encapsulation for organic light emitting diodes grown by low-temperature atomic layer deposition[J]. Applied Physics Letters, 2009, 94(23): 157.
[72] [72] Moro L L, Krajewski T A, Rutherford N M, et al. Process and design of a multilayer thin film encapsulation of passive matrix OLED displays[C]//Organic Light-Emitting Materials and Devices VII. of SPIE, 2004, 5214: 83-93.
[73] [73] Park J S, CHAE H, CHUNG H K, et al. Thin film encapsulation for flexible AM-OLED: a review[J]. Semiconductor Science Technology, 2011, 26(3): 034001.
[74] [74] Ghosh A P, Gerenser L J, Jarman C M, et al. Thin-film encapsulation of organic light-emitting devices[J]. Applied Physics Letters, 2005, 86(22): 913.
[75] [75] WU J, FEI F, WEI C, et al. Efficient multi-barrier thin film encapsulation of OLED using alternating Al2O3 and polymer layers[J]. Rsc Advances, 2018, 8(11): 5721-5727.
[76] [76] YOON K H, KIM H S, HAN K S, et al. Extremely high barrier performance of organic-inorganic nanolaminated thin films for organic light-emitting diodes[J]. Acs Applied Materials & Interfaces, 2017, 9(6): 5399-5408.
[77] [77] LEE L, YOON K H, JUNG J W, et al. Ultra gas-proof polymer hybrid thin layer[J]. Nano Letters, 2018, 18(9): 5461-5466.
[78] [78] Franke S, Baumktter M, Monka C, et al. Alumina films as gas barrier layers grown by spatial atomic layer deposition with trimethylaluminum and different oxygen sources[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2017, 35(1): 01B117.
[79] [79] YANG Y Q, DUAN Y, CHEN P, et al. Realization of thin film encapsulation by atomic layer deposition of Al2O3 at low temperature[J]. The Journal of Physical Chemistry C, 2013, 117(39): 20308-20312.
[80] [80] KIM L H, KIM K, Park S, et al. Al2O3/TiO2 nanolaminate thin film encapsulation for organic thin film transistors via plasma-enhanced atomic layer deposition[J]. ACS Applied Materials & Interfaces, 2014, 6(9): 6731-6738.
[81] [81] KIM H K, KIM S W, KIM D G, et al. Thin film passivation of organic light emitting diodes by inductively coupled plasma chemical vapor deposition[J]. Thin Solid Films, 2007, 515(11): 4758-4762.
[82] [82] HUANG W, WANG X, SHENG M, et al. Low temperature PECVD SiNx films applied in OLED packaging[J]. Materials Science and Engineering: B, 2003, 98(3): 248-254.
[83] [83] Nagai M. Defects of passivation films for color-filter-based OLED devices: Effects on dark spot formation[J]. Journal of The Electrochemical Society, 2006, 154(2): J65.
[84] [84] Yun S J, Abidov A, Kim S, et al. Water vapor transmission rate property of SiNx thin films prepared by low temperature (< 100℃) linear plasma enhanced chemical vapor deposition[J]. Vacuum, 2018, 148: 33-40.
[85] [85] Dameron A A, Davidson S D, Burton B B, et al. Gas diffusion barriers on polymers using multilayers fabricated by Al2O3 and rapid SiO2 atomic layer deposition[J]. The Journal of Physical Chemistry C, 2008, 112(12): 4573-4580.
[86] [86] Keuning W, Van de Weijer P, Lifka H, et al. Cathode encapsulation of organic light emitting diodes by atomic layer deposited Al2O3 films and Al2O3/-SiNx: H stacks[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2012, 30(1): 01A131.
[87] [87] CHEN T N, WU D S, WU C C, et al. Improvements of permeation barrier coatings using encapsulated parylene interlayers for flexible electronic applications[J]. Plasma Processes and Polymers, 2007, 4(2): 180-185.
Get Citation
Copy Citation Text
HU Songwen, ZHOU Yunhong, JIN Jingyi, YANG Wenyun, YANG Weiping, CHEN Xuemei, CHEN Pengyuan, ZHANG Lei, LI Side, GAO Shuxiong, LEI Denglin. Research Progress on the Formation Mechanism and Prevention of Black Spot in Organic Light-Emitting Devices[J]. Infrared Technology, 2024, 46(11): 1261