Laser & Optoelectronics Progress, Volume. 57, Issue 16, 161024(2020)

Fall Detection Based on Convolutional Neural Network and XGBoost

Xinchi Zhao1,2, Anming Hu1,2, and Wei He1、*
Author Affiliations
  • 1Key Laboratory of Wireless Sensor Network and Communication, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 201800, China
  • 2University of Chinese Academy of Sciences, Beijing 100864, China
  • show less
    Figures & Tables(15)
    Overall flow chart of algorithm
    Architecture of SE block
    Architecture of human pose estimation
    Schematic diagram of partial eigenvalue selection. (a) Some joints and joint angles; (b) body relative position vector
    Training samples (standing). (a) Walking in oblique direction; (b) backward walking; (c) lateral walking; (d) front standing
    Training sample (falling). (a) Front half fall; (b) side half fall; (c) lie; (d) prostration
    Training sample (sitting). (a) Sitting posture of left; (b) sitting posture of right
    Examples of pose estimation results. (a) Fall posture bone detection; (b) sitting posture bone detection; (c) standing posture bone detection; (d) coordinate distribution of 17 joints of standing posture of human body
    First subtree of XGBoost
    Test results of actual scene. (a) Half fall; (b) fall on one side
    Comparison of different algorithms. (a) Algorithm in this paper under the same posture; (b) poor posture detected in Ref. [10]
    • Table 1. Experimental results

      View table

      Table 1. Experimental results

      ItemNumber of images
      Image predicted as falling250
      Image predicted as standing263
      Image predicted as sitting237
      Image of actual falling250
      Image of actual standing250
      Image of actual sitting250
    • Table 2. Confusion matrix

      View table

      Table 2. Confusion matrix

      Confusion matrixActual value
      PositiveNegative
      PredictedvaluePositiveITPIFP
      NegativeIFNITN
    • Table 3. Classification evaluation indexes

      View table

      Table 3. Classification evaluation indexes

      IndexFor fallingFor standingFor sitting
      Accuracy0.9830.9830.983
      Precision1.0000.9511.000
      Recall1.0001.0000.948
      F11.0000.9750.973
    • Table 4. Comparison of results%

      View table

      Table 4. Comparison of results%

      AlgorithmAccuracy
      Method in Ref. [10]91.3
      Method in Ref. [11]93.0
      Method in Ref. [20]Method in Ref. [21]91.096.0
      RMPE+XGBoost (ours)98.3
    Tools

    Get Citation

    Copy Citation Text

    Xinchi Zhao, Anming Hu, Wei He. Fall Detection Based on Convolutional Neural Network and XGBoost[J]. Laser & Optoelectronics Progress, 2020, 57(16): 161024

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Feb. 6, 2020

    Accepted: Mar. 19, 2020

    Published Online: Aug. 5, 2020

    The Author Email: Wei He (wei.he@mail.sim.ac.cn)

    DOI:10.3788/LOP57.161024

    Topics