Laser & Optoelectronics Progress, Volume. 54, Issue 9, 90002(2017)
Research Status of Optofluidic Variable Aperture
[1] [1] Tognetto D, Agolini G, Grandi G, et al. Iris alteration using mechanical iris retractors[J]. Journal of Cataract & Refractive Surgery, 2001, 27(10): 1703-1705.
[2] [2] Wang Z Y, Ding H, Lu G J, et al. Use of a mechanical iris-based fiber optic probe for spatially offset Raman spectroscopy[J]. Optics Letters, 2014, 39(13): 3790-3793.
[3] [3] Cui Jianguo, Wang Runshi, Yuan Wei, et al. Liquid lens research status and prospects[J]. Journal of Chongqing University of Technology (Natural Science), 2016, 30(11): 105-110.
[4] [4] Wang Di, Li Fangzhuan, Wang Qionghua, et al. A method of holographic chromatic aberration compensation based on a liquid lens[J]. Chinese J Lasers, 2015, 42(5): 0509001.
[6] [6] Calixto S, Sánchez-Morales M E, Sánchez-Marin F J, et al. Optofluidic variable focus lenses[J]. Applied Optics, 2009, 48(12): 2308-2314.
[7] [7] Wang D, Liu C, Li L, et al. Adjustable liquid aperture to eliminate undesirable light in holographic projection[J]. Optics Express, 2016, 24(3): 2098-2105.
[8] [8] Sun Zhiwen, Xie Erqing, Han Weihua, et al. Progress of electrowetting[J]. Chinese Journal of Liquid Crystals and Displays, 2008, 23(3): 387-392.
[9] [9] Tang Biao, Zhao Qing, Zhou Min, et al. Research progress in electrowetting dynamics and its instability[J]. Journal of South China Normal University (Natural Science Edition), 2016, 48(1): 35-41.
[10] [10] Ling Mingxiang. Research on manipulation and control of droplets based on electrowetting on dielectric[D]. Harbin: Harbin Institute of Technology, 2011.
[11] [11] Zhu Xixia. The research on the phenomenon of the EWOD[J] .Manufacturing Automation, 2009, 31(8): 173-175.
[12] [12] Zhao Hui. Design and application of dielectrophoresis and dielectric wetting technology[D]. Nanjing: Southeast University, 2012.
[14] [14] Muller P, Feuerstein R, Zappe H. Integrated optofluidic iris[J]. Journal of Microelectromechanical Systems, 2012, 21(5): 1156-1164.
[15] [15] Müller P, Feuerstein R, Zappe H. A fully integrated optofluidic micro-iris[C]. Micro Electro Mechanical Systems, 2012: 7-10.
[16] [16] Li L, Liu C, Ren H W, et al. Adaptive liquid iris based on electrowetting[J]. Optics Letters, 2013, 38(13): 2336-2338.
[17] [17] Li Xiange, Bai Pengfei, Shui Lingling, et al. The reliability of electrofluidic display devices based on Teflon AF1600[J]. Journal of South China Normal University (Natural Science Edition), 2015, 47(2): 17-20.
[18] [18] Yu C C, J Ho J R, John Cheng J W. Tunable liquid iris actuated using electrowetting effect[J]. Optical Engineering, 2014, 53(5): 057106.
[19] [19] Li L, Liu C, Wang Q H. Electrowetting-based liquid iris[J]. IEEE Photonics Technology Letters, 2013, 25(10): 989-991.
[20] [20] Li L, Wang Q H, Liu C, et al. Adaptive liquid iris for optical switch[J]. Optical Engineering, 2014, 53(4): 047105.
[21] [21] Schuhladen S, Banerjee K, Stürmer M, et al. Variable optofluidic slit aperture[J]. Light: Science & Applications, 2016, 5(1): e16005.
[22] [22] Xu S, Ren H W, Wu S T. Dielectrophoretically tunable optofluidic devices[J]. Journal of Physics D: Applied Physics, 2013, 46(48): 483001.
[23] [23] Yang C C, Yang L, Tsai C G, et al. Fully developed contact angle change of a droplet in liquid actuated by dielectric force[J]. Applied Physics Letters, 2012, 101(18): 182903.
[24] [24] Ren H W, Xu S, Ren D Q, et al. Novel optical switch with a reconfigurable dielectric liquid droplet[J]. Optics Express, 2011, 19(3): 1985-1990.
[25] [25] Luo Z Y, Xu S, Gao Y T, et al. Quantum dots enhanced liquid displays[J]. Journal Display Technology, 2014, 10(12): 987-990.
[26] [26] Xu M, Ren H W, Lin Y H. Electrically actuated liquid iris[J]. Optics Letters, 2015, 40(5): 831-834.
[27] [27] Tsai C G, Yeh J A. Circular dielectric liquid iris[J]. Optics Letters, 2010, 35(14): 2484-2486.
[28] [28] Chang J H, Jung K D, Lee E, et al. Variable aperture controlled by microelectrofluidic iris[J]. Optics Letters, 2013, 38(15): 2919-2922.
[29] [29] Chang J, Jung K D, Lee E, et al. Microelectrofluidic iris for variable aperture[C]. SPIE, 20128252: 82520O.
[30] [30] Oh S H, Seo J H, Jeon J P, et al. Liquid lens based on electromagnetic actuation for high-performance miniature cameras[C]. Anchorage: 2015 Transducers-2015 18th International Conference on Solid-State Sensors, 2015: 2077-2080.
[31] [31] Seo H W, Chae J B, Honga S J, et al. Electromagnetically driven liquid iris[J]. Sensors and Actuators A: Physical, 2015, 231: 52-58.
[32] [32] Jang D, Jeong J W, Lee D Y, et al. Electromagnetically driven liquid iris[C]. APS Division of Fluid Dynamics, 2016.
[33] [33] Seo H W, Chae J B, Hong S J, et al. A tunable optical iris based on electromagnetic actuation for a high-performance mini/micro camera[C]. San Francisco: 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems, 2014: 1147-1150.
[34] [34] Yu H B, Zhou G Y, Chau F S, et al. Optofluidic variable aperture[J]. Optics Letters, 2008, 33(6): 548-550.
[35] [35] Song C L, Nguyen N T, Asundi A K, et al. Tunable optofluidic aperture configured by a liquid-core/liquid-cladding structure[J]. Optics Letters, 2011, 36(10): 1767-1769.
[36] [36] Schadt M, Helfrich W. Voltage-dependent optical activity of a twisted nematic liquid crystal[J]. Applied Physics Letters, 1971, 18(4): 127-128.
[37] [37] Zhou Z W, Ren H W, Nah C W. Adaptive liquid crystal iris[J]. Japanese Journal of Applied Physics, 2014, 53(9): 092201.
[38] [38] Muller P, Spengler N, Zappe H, et al. An optofluidic concept for a tunable micro-iris[J]. Journal of Microelectromechanical Systems, 2010, 19(6): 1477-1484.
Get Citation
Copy Citation Text
Lü Hongyan, Cui Jianguo, Liu Shengxiong, Sun Zhongjie, Pu Shanshan, Xie Liang. Research Status of Optofluidic Variable Aperture[J]. Laser & Optoelectronics Progress, 2017, 54(9): 90002
Category: Reviews
Received: Feb. 15, 2017
Accepted: --
Published Online: Sep. 6, 2017
The Author Email: Lü Hongyan (731933151@qq.com)