Laser & Optoelectronics Progress, Volume. 62, Issue 16, 1637004(2025)

Attention-Enhanced Multiscale Dual-Feature Point Cloud Completion Method

Tianli Wang1, Zequn Zhang1、*, Jie Chen1, Dunbing Tang1, Lanlan Jiang2, and Lingfei Qian3
Author Affiliations
  • 1College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu , China
  • 2Nanjing Nanrui Information Communication Technology, Nanjing 210003, Jiangsu , China
  • 3College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, Jiangsu , China
  • show less
    Figures & Tables(13)
    Framework diagram of multiscale dual-feature point cloud completion network based on OAPTransform. (a) Dual-feature encoder; (b) pyramidal decoder
    Schematic diagram of OAPMLP feature extraction layer
    Schematic of the local magnification of C-DGCNN
    Structure of the offset-position attention layer OAPTransform
    Schematic diagram of point cloud completion at different scales
    Structure of the discriminator
    Loss value curve
    Comparison of the completion effect of the proposed algorithm and PF-Net algorithm on some categories of ShapeNet dataset
    • Table 1. Time consumed by the main methods at three scales

      View table

      Table 1. Time consumed by the main methods at three scales

      Number of dimensionsTime /s
      C-DGCNNOAPTransform
      20480.0160.015
      10240.0060.005
      5120.0030.002
    • Table 2. Memory consumed by the main methods at three scales

      View table

      Table 2. Memory consumed by the main methods at three scales

      Number of dimensionsMemory /MB
      C-DGCNNOAPTransform
      2048894.341504.01
      1024447.84496.01
      512223.65184.01
    • Table 3. Comparison of CD values on the PCN dataset

      View table

      Table 3. Comparison of CD values on the PCN dataset

      ModelCD /103
      AveragePlaneCarChairLampTableBoatCouchCabinet
      FoldingNet13.809.6412.6215.5814.4112.9714.4515.0315.68
      TopNet11.399.2810.3413.1312.9110.4510.6811.3212.97
      PoinTr8.184.838.349.167.867.788.358.1310.89
      PCN10.845.909.0512.4413.539.849.6710.3215.98
      PF-Net7.063.526.557.945.287.137.538.789.74
      Ours6.243.015.764.997.495.166.958.258.31
    • Table 4. Comparison of CD values on the Completion3D dataset

      View table

      Table 4. Comparison of CD values on the Completion3D dataset

      ModelCD /103
      AveragePlaneCarChairLampTableBoatCouchCabinet
      FoldingNet18.0612.3815.6420.6119.9718.6715.6921.1320.35
      TopNet14.667.6813.7220.0714.5216.769.8916.2718.36
      PoinTr8.373.579.158.408.697.549.1711.159.26
      PCN11.097.2610.0515.6110.8811.448.5712.4812.39
      PF-Net7.634.056.088.688.496.696.3210.1110.65
      Ours7.094.126.358.576.965.036.519.989.18
    • Table 5. Comparison results of ablation experiments

      View table

      Table 5. Comparison results of ablation experiments

      ModelMDFFOAPTransformCD
      A6.08
      B5.51
      C5.45
      D5.28
    Tools

    Get Citation

    Copy Citation Text

    Tianli Wang, Zequn Zhang, Jie Chen, Dunbing Tang, Lanlan Jiang, Lingfei Qian. Attention-Enhanced Multiscale Dual-Feature Point Cloud Completion Method[J]. Laser & Optoelectronics Progress, 2025, 62(16): 1637004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Jan. 9, 2025

    Accepted: Mar. 14, 2025

    Published Online: Aug. 6, 2025

    The Author Email: Zequn Zhang (zhjj370@nuaa.edu.cn)

    DOI:10.3788/LOP250484

    CSTR:32186.14.LOP250484

    Topics