Opto-Electronic Engineering, Volume. 47, Issue 10, 200314(2020)
Infrared target detection and recognition in complex scene
[1] [1] Hou YL,Song YY,HaoXL, et al. Multispectral pedestrian detection based on deep convolutional neural networks[C]//2017 IEEE International Conference on Signal Processing, Commu-nications and Computing (ICSPCC), 2018.
[3] [3] Herrmann C, Ruf M, Beyerer J. CNN-based thermal infrared person detection by domain adaptation[J]. Proceedings of SPIE, 2018, 10643: 1064308.
[6] [6] Fu C Y, Liu W, Ranga A, et al. DSSD: deconvolutional single shot detector[Z]. arXiv:1701.06659[cs.CV], 2017.
[7] [7] Redmon J, Farhadi A. YOLOv3: an incremental improvement[Z]. arXiv:1804.02767[cs.CV], 2018.
[8] [8] Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: optimal speed and accuracy of object detection[Z]. arXiv:2004.10934[cs.CV], 2020.
[11] [11] Liu S T, Huang D, Wang Y H. Receptive field block net for ac-curate and fast object detection[Z]. arXiv:1711.07767[cs.CV], 2017.
[15] [15] Rezatofighi H, Tsoi N, Gwak J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regres-sion[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.
Get Citation
Copy Citation Text
Zhang Ruzhen, Zhang Jianlin, Qi Xiaoping, Zuo Haorui, Xu Zhiyong. Infrared target detection and recognition in complex scene[J]. Opto-Electronic Engineering, 2020, 47(10): 200314
Category: Article
Received: Aug. 20, 2020
Accepted: --
Published Online: Jan. 12, 2021
The Author Email: Xiaoping Qi (qixiaoping@163.com)