Chinese Journal of Liquid Crystals and Displays, Volume. 36, Issue 9, 1225(2021)

Research progress of smart windows based on polymer stabilized liquid crystals

ZHANG Yi-yu*, SONG Chun-feng, and GUO Jin-bao
Author Affiliations
  • [in Chinese]
  • show less
    References(95)

    [1] [1] KHANDELWAL H, LOONEN R C G M, HENSEN J L M, et al. Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings [J]. Scientific Reports, 2015, 5(1): 11773.

    [2] [2] ISAAC M,VAN VUUREN D P. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change [J]. Energy Policy, 2009, 37(2): 507-521.

    [3] [3] MALLIKARJUNA K, SHINDE M A, KIM H. Electrochromic smart windows using 2D-MoS2 nanostructures protected silver nanowire based flexible transparent electrodes [J]. Materials Science in Semiconductor Processing, 2020, 117: 105176.

    [4] [4] KANG S K, HO D H, LEE C H, et al. Actively operable thermoresponsive smart windows for reducing energy consumption [J]. ACS Applied Materials & Interfaces, 2020, 12(13): 33838-33845.

    [5] [5] NIKLASSON G A, GRANQVIST C G. Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these [J]. Journal of Materials Chemistry, 2007, 17(2): 127-156.

    [6] [6] KIM H, KIM Y, KIM K S, et al. Flexible thermochromic window based on hybridized VO2/graphene [J]. ACS Nano, 2013, 7(7): 5769-5776.

    [7] [7] BAETENS R, JELLE B P, GUSTAVSEN A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a state-of-the-art review [J]. Solar Energy Materials and Solar Cells, 2010, 94(2): 87-105.

    [8] [8] LAMPERT C M. Large-area smart glass and integrated photovoltaics [J]. Solar Energy Materials and Solar Cells, 2003, 76(4): 489-499.

    [9] [9] BALIYAN V K, JEONG K U, KANG S W. Dichroic-dye-doped short pitch cholesteric liquid crystals for the application of electrically switchable smart windows [J]. Dyes and Pigments, 2019, 166: 403-409.

    [10] [10] WILLIAMS R. Domains in liquid crystals [J]. The Journal of Chemical Physics, 1963, 39(2): 384-388.

    [11] [11] MITOV M. Cholesteric liquid crystals with a broad light reflection band [J]. Advanced Materials, 2012, 24(47): 6260-6276.

    [12] [12] SNYDER L C. Analysis of nuclear magnetic resonance spectra of molecules in liquid-crystal solvents [J]. The Journal of Chemical Physics, 1965, 43(11): 4041-4050.

    [13] [13] HIGGINS D A. Probing the mesoscopic chemical and physical properties of polymer-dispersed liquid crystals [J]. Advanced Materials, 2000, 12(4): 251-264.

    [14] [14] DIERKING I. Polymer network-stabilized liquid crystals [J]. Advanced Materials, 2000, 12(3): 167-181.

    [15] [15] FUNG Y K, YANG D K, YING S, et al. Polymer networks formed in liquid crystals [J]. Liquid Crystals, 1995, 19(6): 797-801.

    [16] [16] ZHANG C H, WANG D R, CAO H, el al. Preparation and electro-optical properties of polymer dispersed liquid crystal films with relatively low liquid crystal content [J]. Polymers for Advanced Technologies, 2013, 24(5): 453-459.

    [17] [17] UMERS, DOANE J W. Light scattering from a small nematic droplet [J]. Physical Review A, 1986, 34(4): 3373-3386.

    [18] [18] DIERKING I, KOSBAR L L, AFZALI-ARDAKANI A, et al. Network morphology of polymer stabilized liquid crystals [J]. Applied Physics Letter, 1997, 71(17): 2454-2456.

    [19] [19] RAJARAM C V, HUDSON S D, CHIEN L C. Morphology of polymer-stabilized liquid crystals [J]. Chemistry of Materials, 1995, 7(12): 2300-2308.

    [20] [20] HENRY R M, RAMSEY R A, SHARMA S C. Effects of crosslinking agent, cure temperature, and UV flux on the electro-optical properties of polymer-dispersed liquid crystal cells [J]. Journal of Polymer Science Part B: Polymer Physics, 2004, 42(3): 404-410.

    [21] [21] FUNG Y K, YANG D K, DOANE J W. Cholesteric liquid crystal/polymer gel dispersion for flat-panel displays [J]. Proceedings of SPIE-The International Society for Optical Engineering, 1992, 1664:41-47.

    [22] [22] VAZ N A, SMITH G W, MONTGOMERY G P JR. A light control film composed of liquid crystal droplets dispersed in a UV-curable polymer [J]. Molecular Crystals and Liquid Crystals, 1987, 146(1): 1-15.

    [23] [23] GOTTARELLI G, SPADA G P. Induced cholesteric mesophases: origin and application [J]. Molecular Crystals and Liquid Crystals, 1985, 123(1): 377-388.

    [24] [24] HICKS S E, HURLEY S P, ZOLA R S, et al. Polymer stabilized VA mode liquid crystal display [J]. Journal of Display Technology, 2011, 7(11): 619-623.

    [25] [25] LIN Y H, CHEN H S, CHIANG T H. A reflective polarizer-free display using dye-doped polymer-stabilized blue-phase liquid crystals [J]. Journal of the Society for Information Display, 2012, 20(6): 333-336.

    [26] [26] LIU Y J, SUN X W, DAI H T, et al. Effect of surfactant on the electro-optical properties of holographic polymer dispersed liquid crystal Bragg gratings [J]. Optical Materials, 2005, 27(8): 1451-1455.

    [27] [27] FURUE H, MIYAMA T, IIMURA Y, et al. Mesogenic polymer stabilized ferroelectric liquid crystal display exhibiting monostability with high contrast ratio and grayscale capability [J]. Japanese Journal of Applied Physics, 1997, 36(11B): L1517-L1519.

    [29] [29] CHENG K T, LEE P Y, QASIM M M, et al. Electrically switchable and permanently stable light scattering modes by dynamic fingerprint chiral textures [J]. ACS Applied Materials & Interfaces, 2016, 8(16): 10483-10493.

    [30] [30] KE Y J, CHEN J W, LIN C J, et al. Smart windows: electro-, thermo-, mechano-, photochromics, and beyond [J]. Advanced Energy Materials, 2019, 9(39): 1902066.

    [31] [31] SATAPATHY P, PARTHASARATHI S, RAO D S S, et al. Switchable smart windows using a biopolymer network of cellulose nanocrystals imposed on a nematic liquid crystal [J]. Applied Physics Letters, 2020, 117(10): 103702.

    [32] [32] YU B H, JI S M, KIM J H, et al. Light shutter using dye-doped cholesteric liquid crystals with polymer network structure [J]. Journal of Information Display, 2017, 18(1): 13-17.

    [33] [33] LU H B, ZHANG Q, SHA J Q, et al. Highly polarized absorption and emission from polymer-stabilized smectic guest-host systems [J]. Liquid Crystals, 2019, 46(10): 1574-1583.

    [34] [34] ZHOU Y, YOU Y X, LIAO X L, et al. Effect of polymer network topology on the electro-optical performance of polymer stabilized liquid crystal (PSLC) devices [J]. Macromolecular Chemistry and Physics, 2020, 221(18): 2000185.

    [35] [35] VAN DERASDONK P, KOUWER P H J. Liquid crystal templating as an approach to spatially and temporally organise soft matter [J]. Chemical Society Reviews, 2017, 46(19): 5935-5949.

    [36] [36] NIU S M, LIU Y, WANG S H, et al. Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators [J]. Advanced Functional Materials, 2014, 24(22): 3332-3340.

    [37] [37] GREEN L, LI Y N, WHITE T, et al. Light-driven molecular switches with tetrahedral and axial chirality [J]. Organic & Biomolecular Chemistry, 2009, 7(19): 3930-3933.

    [38] [38] OH S W, KIM S H, BAEK J M, et al. Optical and thermal switching of liquid crystals for self-shading windows [J]. Advanced Sustainable Systems, 2018, 2(5): 1700164.

    [39] [39] DOANE J W, GOLEMME A, WEST J L, et al. Polymer dispersed liquid crystals for display application [J]. Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics, 1988, 165(1): 511-532.

    [40] [40] KIM B K, KIM S H, SONG J C. Polymer network liquid crystals from U.V. curable polyurethane acrylate [J]. Polymer, 1998, 39(24): 5949-5959.

    [41] [41] OKULSKA-BOZEK M, PROT T, BORYCKI J, et al. Preparation and evaluation of polyimide layers as materials for nematic liquid crystal orientation [J]. Liquid Crystals, 1996, 20(3): 349-359.

    [42] [42] CHEN W J, CHEN W, ZHANG B Q, et al. Thermal imidization process of polyimide film: interplay between solvent evaporation and imidization [J]. Polymer, 2017, 109: 205-215.

    [43] [43] MIZUSAKI M, NAKANISHI Y, ENOMOTO S. Fabrication of vertically aligned liquid crystal cell without using a conventional alignment layer [J]. Liquid Crystals, 2018, 45(2): 270-278.

    [44] [44] LIU Y, LEE J H, SEO D S. Ion beam fabrication of aluminum-doped zinc oxide layer for high-performance liquid crystals alignment [J]. Optics Express, 2016, 24(15): 17424-17432.

    [45] [45] LEE T R, KIM J H, LEE S H, et al. Investigation on newly designed low resistivity polyimide-type alignment layer for reducing DC image sticking of in-plane switching liquid crystal display [J]. Liquid Crystals, 2017, 44(4): 738-747.

    [46] [46] JUNG W B, JEONG H S, JEON H J, et al. Polymer-layer-free alignment for fast switching nematic liquid crystals by multifunctional nanostructured substrate [J]. Advanced Materials, 2015, 27(42): 6760-6766.

    [47] [47] ZHANG Y, WANG C R, ZHAO W, et al. Polymer stabilized liquid crystal smart window with flexible substrates based on low-temperature treatment of polyamide acid technology [J]. Polymers, 2019, 11(11): 1869.

    [49] [49] HU X W, ZHANG X M, YANG W M, et al. Stable and scalable smart window based on polymer stabilized liquid crystals [J]. Journal of Applied Polymer Science, 2020, 137(30): 48917.

    [50] [50] MENG C L, TSENG M C, TANG S T, et al. Normally transparent smart window with haze enhancement via inhomogeneous alignment surface [J]. Liquid Crystals, 2019, 46(3): 484-491.

    [51] [51] YU B H, HUH J W, HEO J, et al. Simultaneous control of haze and transmittance using a dye-doped cholesteric liquid crystal cell [J]. Liquid Crystals, 2015, 42(10): 1460-1464.

    [52] [52] SEKI H, UCHIDA T, SHISHIDO C. Light-stability of dichroic guest-host cells [J]. Japanese Journal of Applied Physics, 1980, 19(8): L501-L503.

    [53] [53] BLOOM A, HUNG P L K, MEYERHOFER D. The effect of host on pleochroic dye order parameter [J]. Molecular Crystals and Liquid Crystals, 1977, 41(1): 1-4.

    [54] [54] OH S W, BAEK J M, KIM S H, et al. Optical and electrical switching of cholesteric liquid crystals containing azo dye [J]. RSC Advances, 2017, 7(32): 19497-19501.

    [55] [55] KHAN A, MONTBACH E. Flexible eWriter technology and applications [J]. SID Symposium Digest of Technical Papers, 2015, 46(1): 242-245.

    [56] [56] HEILMEIER G H, ZANONI L A. Guest-host interactions in nematic liquid crystals. a new electro-optic effect [J]. Applied Physics Letters, 1968, 13(3): 91-92.

    [57] [57] WHITE D L, TAYLOR G N. New absorptive mode reflective liquid-crystal display device [J]. Journal of Applied Physics, 1974, 45(11): 4718-4723.

    [58] [58] SUN H T, XIE Z P, JU C, et al. Dye-doped electrically smart windows based on polymer-stabilized liquid crystal [J]. Polymers, 2019, 11(4): 694.

    [59] [59] SINGH U B, DHAR R, DABROWSKI R, et al. Influence of low concentration silver nanoparticles on the electrical and electro-optical parameters of nematic liquid crystals [J]. Liquid Crystals, 2013, 40(6): 774-782.

    [60] [60] GARBOVSKIY Y, GLUSHCHENKO I. Nano-objects and ions in liquid crystals: ion trapping effect and related phenomena [J]. Crystals, 2015, 5(4): 501-533.

    [61] [61] LEE W K, CHOI J H, NA H J, et al. Low-power operation of vertically aligned liquid-crystal system via anatase-TiO2 nanoparticle dispersion [J]. Optics Letters, 2009, 34(23): 3653-3655.

    [62] [62] NA H J, LEE H J, KIM I G, et al. Alignment characteristics of liquid crystal molecules on titanium dioxide thin film [J]. Molecular Crystals and Liquid Crystals, 2011, 550(1): 45-50.

    [63] [63] MIKAMI M, NAKAMURA S, KITAO O, et al. First-principles study of titanium dioxide: rutile and anatase [J]. Japanese Journal of Applied Physics, 2000, 39(8B): L847-L850.

    [65] [65] OH C W, PARK E G, PARK H G. Electro-optical behavior of liquid crystals doped with low concentrations of various titanate nanoparticles [J]. Journal of Nanoscience and Nanotechnology, 2019, 19(10): 6393-6397.

    [66] [66] YAN X D, LIU W, ZHOU Y, et al. Improvement of electro-optical properties of PSLC devices by silver nanowire doping [J]. Applied Sciences, 2019, 9(1): 145.

    [67] [67] YAN X D, ZHOU Y, LIU W, et al. Effects of silver nanoparticle doping on the electro-optical properties of polymer stabilized liquid crystal devices [J]. Liquid Crystals, 2020, 47(8): 1131-1138.

    [68] [68] CHOI Y J, YOON W J, KIM D Y, et al. Stimuli-responsive liquid crystal physical gels based on the hierarchical superstructures of benzene-1,3,5-tricarboxamide macrogelators [J]. Polymer Chemistry, 2017, 8(12): 1888-1894.

    [69] [69] CHOI Y J, KIM D Y, PARK M, et al. Self-assembled hierarchical superstructures from the benzene-1,3,5-tricarboxamide supramolecules for the fabrication of remote-controllable actuating and rewritable films [J]. ACS Applied Materials & Interfaces, 2016, 8(14): 9490-9498.

    [70] [70] YOON W J, CHOI Y J, LIM S I, et al. A single-step dual stabilization of smart window by the formation of liquid crystal physical gels and the construction of liquid crystal chambers [J]. Advanced Functional Materials, 2020, 30(4): 1906780.

    [71] [71] HUH J W, JI S M, HEO J, et al. Bistable light shutter using dye-doped cholesteric liquid crystals driven with crossed patterned electrodes [J]. Journal of Display Technology, 2016, 12(8): 779-783.

    [72] [72] FUH A Y G, CHEN C C, LIU C K, et al. Polarizer-free, electrically switchable and optically rewritable displays based on dye-doped polymer-dispersed liquid crystals [J]. Optics Express, 2009, 17(9): 7088-7094.

    [73] [73] YU B H, JI S M, KIM J H, et al. Fabrication of a dye-doped liquid crystal light shutter by thermal curing of polymer [J]. Optical Materials, 2017, 69: 164-168.

    [74] [74] KE Y J, ZHOU C Z, ZHOU Y, et al. Emerging thermal-responsive materials and integrated techniques targeting the energy-efficient smart window application [J]. Advanced Functional Materials, 2018, 28(22): 1800113.

    [75] [75] KWON H K, LEE K T, HUR K, et al. Optically switchable smart windows with integrated photovoltaic devices [J]. Advanced Energy Materials, 2015, 5(3): 1401347.

    [76] [76] LEE E, KIM D, YOON J. Stepwise activation of switchable glazing by compositional gradient of copolymers [J]. ACS Applied Materials & Interfaces, 2016, 8(39): 26359-26364.

    [77] [77] OH S W, BAEK J M, YOON T H. Sunlight-switchable light shutter fabricated using liquid crystals doped with push-pull azobenzene [J]. Optics Express, 2016, 24(23): 26575-26582.

    [78] [78] BOGATI S, BASNET R, GRAF W, et al. Development of photochromic device with magnetron sputtered titanium dioxide and tungsten trioxide films [J]. Solar Energy Materials and Solar Cells, 2017, 166: 204-211.

    [79] [79] GUTIERREZ-CUEVAS K G, WANG L, ZHENG Z G, et al. Frequency-driven self-organized helical superstructures loaded with mesogen-grafted silica nanoparticles [J]. Angewandte Chemie, 2016, 128(42): 13284-13288.

    [80] [80] BARILE C J, SLOTCAVAGE D J, HOU J, et al. Dynamic windows with neutral color, high contrast, and excellent durability using reversible metal electrodeposition [J]. Joule, 2017, 1(1): 133-145.

    [81] [81] LIANG X, GUO S M, CHEN M, et al. A temperature and electric field-responsive flexible smart film with full broadband optical modulation [J]. Materials Horizons, 2017, 4(5): 878-884.

    [82] [82] HOFFMANN S, LEE E S, CLAVERO C. Examination of the technical potential of near-infrared switching thermochromic windows for commercial building applications [J]. Solar Energy Materials and Solar Cells, 2014, 123: 65-80.

    [83] [83] WANG S F, LIU M S, KONG L B, et al. Recent progress in VO2 smart coatings: strategies to improve the thermochromic properties [J]. Progress in Materials Science, 2016, 81: 1-54.

    [84] [84] JEONG J, AETUKURI N, GRAF T, et al. Suppression of metal-insulator transition in VO2 by electric field-induced oxygen vacancy formation [J]. Science, 2013, 339(6126): 1402-1405.

    [85] [85] LIANG X, CHEN M, GUO S M, et al. Dual-band modulation of visible and near-infrared light transmittance in an all-solution-processed hybrid micro-nano composite film [J]. ACS Applied Materials & Interfaces, 2017, 9(46): 40810-40819.

    [86] [86] RANJKESH A, YOON T H. Thermal and electrical wavelength tuning of Bragg reflection with ultraviolet light absorbers in polymer-stabilized cholesteric liquid crystals [J]. Journal of Materials Chemistry C, 2018, 6(45): 12377-12385.

    [87] [87] ZHANG B B, LIN X Y, YOU Y X, et al. Flexible thermal responsive infrared reflector based on cholesteric liquid crystals and polymer stabilized cholesteric liquid crystals [J]. Optics Express, 2019, 27(9): 13516-13525.

    [88] [88] KUANG Z Y, DENG Y, HU J, et al. Responsive smart windows enabled by the azobenzene copolymer brush with photothermal effect [J]. ACS Applied Materials & Interfaces, 2019, 11(40): 37026-37034.

    [90] [90] KUMAR P, KANG S W, LEE S H. Advanced bistable cholesteric light shutter with dual frequency nematic liquid crystal [J]. Optical Materials Express, 2012, 2(8): 1121-1134.

    [91] [91] HUANG C Y, FU K Y, LO K Y, et al. Bistable transflective cholesteric light shutters [J]. Optics Express, 2003, 11(6): 560-565.

    [92] [92] YANG D K, DOANE J W, YANIV Z, et al. Cholesteric reflective display: drive scheme and contrast [J]. Applied Physics Letters, 1994, 64(15): 1905-1907.

    [93] [93] HSU J S, LIANG B J, CHEN S H. Bistable chiral tilted-homeotropic nematic liquid crystal cells [J]. Applied Physics Letters, 2004, 85(23): 5511-5513.

    [94] [94] OUTRAM B I, ELSTON S J. Dual-frequency bistable reflective cholesteric liquid crystal displays based on chiral-flexoelectric polarisation dispersion [J]. Journal of Applied Physics, 2013, 114(8): 083113.

    [95] [95] LAN Z J, LI Y, DAI H T, et al. Bistable smart window based on ionic liquid doped cholesteric liquid crystal [J]. IEEE Photonics Journal, 2017, 9(1): 2200307

    [96] [96] HUH J W, HEO J, YU B H, et al. Bistable light shutter using dye-doped liquid crystals for a see-through display [J]. Proceeding of SPIE 9769, Emerging Liquid Crystal Technologies Ⅺ. San Francisco: SPIE, 2016: 976914.

    [97] [97] CHEN M, LIANG X, HU W, et al. A polymer microsphere-filled cholesteric-liquid crystal film with bistable electro-optical characteristics [J]. Materials & Design, 2018, 157: 151-158.

    [98] [98] LEE K M, TONDIGLIA V P, WHITE T J. Bistable switching of polymer stabilized cholesteric liquid crystals between transparent and scattering modes [J]. MRS Communications, 2015, 5(2): 223-227.

    [99] [99] KIM J H, HUH J W, OH S W, et al. Bistable switching between homeotropic and focal-conic states in an ion-doped chiral nematic liquid crystal cell [J]. Optics Express, 2017, 25(23): 29180-29188.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Yi-yu, SONG Chun-feng, GUO Jin-bao. Research progress of smart windows based on polymer stabilized liquid crystals[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(9): 1225

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 15, 2021

    Accepted: --

    Published Online: Nov. 15, 2021

    The Author Email: ZHANG Yi-yu (2019210163@mail.buct.edu.cn)

    DOI:10.37188/cjlcd.2021-0101

    Topics