Laser & Optoelectronics Progress, Volume. 59, Issue 4, 0417003(2022)
SAU-Net: Multiorgan Image Segmentation Method Improved Using Squeeze Attention Mechanism
[1] Long Y, Mi K, Fan J C et al. Prognosis and related influencing factors of HPV-positive head and neck squamous cell carcinoma[J]. Journal of Cancer Control and Treatment, 24, 196-200(2011).
[4] Lu J F, Lin H, Pan Z G. Adaptive region growing algorithm in medical images segmentation[J]. Journal of Computer Aided Design & Computer Graphics, 17, 2168-2173(2005).
[9] Yi S L, Wang T W, Yang X L et al. Improved lung field segmentation method of u-net network[J]. Laser & Optoelectronics Progress, 59, 0210010(2022).
[10] Feng B W, Lü X Q, Gu Y et al. Three-dimensional parallel convolution neural network brain tumor segmentation based on dilated convolution[J]. Laser & Optoelectronics Progress, 57, 141009(2020).
[11] Zhang W X, Zhu Z C, Zhang Y H et al. Cell image segmentation method based on residual block and attention mechanism[J]. Acta Optica Sinica, 40, 1710001(2020).
[12] Li D X, Zhang Z. Improved U-net segmentation algorithm for the retinal blood vessel images[J]. Acta Optica Sinica, 40, 1010001(2020).
Get Citation
Copy Citation Text
Guogang Cao, Hongdong Mao, Shu Zhang, Ying Chen, Cuixia Dai. SAU-Net: Multiorgan Image Segmentation Method Improved Using Squeeze Attention Mechanism[J]. Laser & Optoelectronics Progress, 2022, 59(4): 0417003
Category: Medical Optics and Biotechnology
Received: Jul. 18, 2021
Accepted: Sep. 13, 2021
Published Online: Feb. 15, 2022
The Author Email: Guogang Cao (guogangcao@163.com)