Acta Optica Sinica, Volume. 38, Issue 6, 0620001(2018)

Landform Image Classification Based on Discrete Cosine Transformation and Deep Network

Fang Liu*, Lixia Lu, Guangwei Huang, Hongjuan Wang, and Xin Wang
Author Affiliations
  • Faculty of Information Technology, Beijing University of Technology, Beijing 100022, China
  • show less
    Figures & Tables(13)
    (a) Original image and (b) energy distribution after DCT
    Structure of CNN
    Three-dimensional spectrum diagram. (a) DCT coefficient spectrum of original image; (b) spectrum after the coefficient selection
    Structure of DCT-CNN model
    Flow chart of landform image classification algorithm based on DCT and deep network
    Example images in database. (a) UC Merced LU database; (b) UAV landing landform database
    Classification performance of each method when the number of training samples is different. (a) UC Merced LU database; (b) UAV landing landform database
    Image classification confusion matrix for UAV landing landform database
    • Table 1. Layer parameters of DCT-CNN network structure

      View table

      Table 1. Layer parameters of DCT-CNN network structure

      LayerTypePatch sizeStrideZero paddingOutput size
      xInput128×128
      h1Convolution5×512128×128×32
      h2ReLU
      h3Mean pooling3×3264×64
      h4Convolution3×32032×32×32
      h5ReLU
      h6Max pooling3×3216×16
      h7Convolution7×71214×14×64
      h8ReLU
      h9Max pooling3×327×7
      h10Convolution7×7101×1×64
      h11ReLU
      h12Convolution1×1101×1×10
      oSVMn(class)
    • Table 2. Effect of different methods on classification of UC Merced LU database

      View table

      Table 2. Effect of different methods on classification of UC Merced LU database

      MethodAccuracy /%SDTraining time /h
      Method 184.250.780.8
      Method 295.760.281.0
      Method 392.830.523.3
    • Table 3. Effect of different methods on classification of UVA landing landform database

      View table

      Table 3. Effect of different methods on classification of UVA landing landform database

      MethodAccuracy/%SDTraining time /h
      Method 183.730.851.0
      Method 294.380.341.3
      Method 392.100.613.9
    • Table 4. Comparison of the classification accuracy of different methods for UC Merced LU database

      View table

      Table 4. Comparison of the classification accuracy of different methods for UC Merced LU database

      MethodAccuracy /%SD
      RF79.250.82
      LDA-RF82.920.69
      CS-CNN[5]92.860.59
      PSR[15]89.100.69
      MS-DCNN[16]91.340.63
      DCT-CNN95.760.28
    • Table 5. Comparison of the classification accuracy of different methods for UAV landing landform database

      View table

      Table 5. Comparison of the classification accuracy of different methods for UAV landing landform database

      MethodAccuracy /%SD
      RF77.100.70
      LDA-RF80.230.74
      CS-CNN[5]91.780.62
      DCT-SAE[12]86.490.96
      MS-DCNN[16]90.160.71
      DCT-CNN94.380.34
    Tools

    Get Citation

    Copy Citation Text

    Fang Liu, Lixia Lu, Guangwei Huang, Hongjuan Wang, Xin Wang. Landform Image Classification Based on Discrete Cosine Transformation and Deep Network[J]. Acta Optica Sinica, 2018, 38(6): 0620001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optics in Computing

    Received: Oct. 17, 2017

    Accepted: --

    Published Online: Jul. 9, 2018

    The Author Email: Liu Fang (liufang@bjut.edu.cn)

    DOI:10.3788/AOS201838.0620001

    Topics