Optics and Precision Engineering, Volume. 32, Issue 9, 1293(2024)
Research developments of extreme ultra-violet multilayers for 40-90 nm
[1] BROOKS D H, YARDLEY S L. The source of the major solar energetic particle events from super active region 11944[J]. Science Advances, 7(2021).
[3] ZHANG J, TEMMER M, GOPALSWAMY N et al. Earth-affecting solar transients: a review of progresses in solar cycle 24[J]. Progress in Earth and Planetary Science, 8, 56(2021).
[4] MARSDEN R, MÜLLER D, HASSLER D et al. Solar orbiter: exploring the Sun-heliosphere connection, solar orbiter assessment study report[J]. Sol Phys., 285, 25-70(2013).
[5] TOUSEY R. Solar spectroscopy from Rowland to SOT[J]. Vistas in Astronomy, 29, 175-199(1986).
[6] BOWYER S. Astronomy and the Extreme Ultraviolet Explorer satellite[J]. Science, 263, 55-59(1994).
[7] BOWYER S. Extreme ultraviolet astronomy[J]. Scientific American, 271, 32-39(1994).
[8] HORNECK G, WALTER N, WESTALL F et al. AstRoMap European astrobiology roadmap[J]. Astrobiology, 16, 201-243(2016).
[9] DRAKE J J, CHEIMETS P N, GARRAFFO C et al. NExtUP: the normal-incidence extreme ultraviolet photometer[C], 11821, 1182108(2021).
[10] FRANCE K C, FLEMING B T, YOUNGBLOOD A et al. EUV spectroscopy with the ESCAPE mission: exploring the stellar drivers of exoplanet habitability[C]. SPIE, 11444, 1114405(2020).
[11] SPILLER E. Low-loss reflection coatings using absorbing materials[J]. Applied Physics Letters, 20, 365-367(1972).
[12] UNDERWOOD J H, BRUNER M E, HAISCH B M et al. X-ray photographs of a solar active region with a multilayer telescope at normal incidence[J]. Science, 238, 61-64(1987).
[13] HANDY B N, ACTON L W, KANKELBORG C C et al. The transition region and coronal explorer[J]. Solar Physics, 187, 229-260(1999).
[14] WUELSER J P, LEMEN J R, TARBELL T D et al. EUVI: the STEREO-SECCHI extreme ultraviolet imager[C], 5171, 111-122(2004).
[15] CULHANE J L, HARRA L K, JAMES A M et al. The EUV imaging spectrometer for hinode[J]. Solar Physics, 243, 19-61(2007).
[16] LEMEN J R, TITLE A M, AKIN D J et al. The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO)[J]. Solar Physics, 275, 17-40(2012).
[17] SEATON D B, BERGHMANS D, NICULA B et al. The SWAP EUV imaging telescope part I: instrument overview and pre-flight testing[J]. Solar Physics, 286, 43-65(2013).
[18] SLEMZIN V A, KUZIN S V, ZHITNIK I A et al. Observations of solar EUV radiation with the CORONAS-F/SPIRIT and SOHO/EIT instruments[J]. Solar System Research, 39, 489-500(2005).
[19] MART\'\INEZ-GALARCE D, SOUFLI R, WINDT D L et al. Multisegmented, multilayer-coated mirrors for the Solar Ultraviolet Imager[J]. Optical Engineering, 52(2013).
[20] KUZIN S V, ZHITNIK I A, SHESTOV S V et al. The TESIS experiment on the CORONAS-PHOTON spacecraft[J]. Solar System Research, 45, 162-173(2011).
[21] BAI X Y, TIAN H, DENG Y Y et al. The solar upper transition region imager (SUTRI) onboard the SATech-01 satellite[J]. Research in Astronomy and Astrophysics, 23(2023).
[22] WINDT D L. IMD—software for modeling the optical properties of multilayer films[J]. Computers in Physics, 12, 360-370(1998).
[23] SPILLER E.
[24] UNDERWOOD J H, BARBEE T WJR. Layered synthetic microstructures as Bragg diffractors for X rays and extreme ultraviolet: theory and predicted performance[J]. Applied Optics, 20, 3027-3034(1981).
[25] BRAUN S, MOSS M et al. Mo/Si multilayers with different barrier layers for applications as extreme ultraviolet mirrors[J]. Japanese Journal of Applied Physics, 41, 4074-4081(2002).
[26] ZHU J T, ZHOU S K, LI H C et al. Thermal stability of Mg/Co multilayer with B4C, Mo or Zr diffusion barrier layers[J]. Optics Express, 19, 21849(2011).
[27] HUANG S P, JI B, ZHOU J et al. Improving the EUV reflectivity of Mg/SiC multilayers by inserting Zr barrier layers at the SiC-on-Mg interfaces[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 832, 184-186(2016).
[28] SARKAR P, BISWAS A, KUMAR R et al. Role of C and B4C barrier layers in controlling diffusion propagation across the interface of Cr/Sc multilayers[J]. Physical Chemistry Chemical Physics, 25, 3072-3082(2023).
[29] WINDT D L, GULLIKSON E M. Pd/B4C/Y multilayer coatings for extreme ultraviolet applications near 10 nm wavelength[J]. Applied Optics, 54, 5850-5860(2015).
[30] DE ROOIJ-LOHMANN V I T A, VELDHUIZEN L W, ZOETHOUT E et al. Chemical interaction of B4C, B, and C with Mo/Si layered structures[J]. Journal of Applied Physics, 108(2010).
[31] BOSGRA J, VELDHUIZEN L W, ZOETHOUT E et al. Interactions of C in layered Mo-Si structures[J]. Thin Solid Films, 542, 210-213(2013).
[32] KJORNRATTANAWANICH B, BAJT S, SEELY J F. Mo/B4C/Si multilayer-coated photodiode with polarization sensitivity at an extreme-ultraviolet wavelength of 13.5 nm[J]. Applied Optics, 43, 1082-1090(2004).
[33] LARRUQUERT J I. New layer-by-layer multilayer design method[J]. Journal of the Optical Society of America A, 19, 385-390(2002).
[34] GAUTIER J, DELMOTTE F, ROULLIAY M et al. Study of normal incidence of three-component multilayer mirrors in the range 20-40 nm[J]. Applied Optics, 44, 384-390(2005).
[35] BAJT S, CHAPMAN H N, NGUYEN N et al. Design and performance of capping layers for extreme-ultraviolet multilayer mirrors[J]. Applied Optics, 42, 5750-5758(2003).
[36] CORSO A J, ZUPPELLA P, NICOLOSI P et al. Capped Mo/Si multilayers with improved performance at 304 nm for future solar missions[J]. Optics Express, 19, 13963-13973(2011).
[37] HENKE B L, GULLIKSON E M, DAVIS J C. X-ray Interactions: photoabsorption, scattering, transmission and reflection at
[38] MARCOS L R D, LARRUQUERT J I, VIDAL-DASILVA M et al. Transmittance and optical constants of Ca films in the 4-1000 eV spectral range[J]. Applied Optics, 54, 1910-1917(2015).
[39] FERNÁNDEZ-PEREA M, LARRUQUERT J I, AZNÁREZ J A et al. Determination of optical constants of scandium films in the 20-1000 eV range[J]. Journal of the Optical Society of America A, 23, 2880-2887(2006).
[40] KJORNRATTANAWANICH B, WINDT D L, BELLOTTI J A et al. Measurement of dysprosium optical constants in the 2-830 eV spectral range using a transmittance method, and compilation of the revised optical constants of lanthanum, terbium, neodymium, and gadolinium[J]. Applied Optics, 48, 3084-3093(2009).
[41] KJORNRATTANAWANICH B, WINDT D L, USPENSKII Y A et al. Optical constants determination of neodymium and gadolinium in the 3-to 100-nm wavelength range[J]. SPIE Optics + Photonics, 6317(2006).
[42] KJORNRATTANAWANICH B, WINDT D L, SEELY J F. Optical constants determination of samarium, holmium, and erbium in the 1.5-850 eV spectral range using a transmittance method[J]. Applied Optics, 49, 6006-6013(2010).
[43] MARCOS L R, LARRUQUERT J, AZNÁREZ J et al. Transmittance and optical constants of Sr films in the 6-1220 eV spectral range[J]. Journal of Applied Physics, 111, 113533(2012).
[44] LARRUQUERT J I, AZNÁREZ J A, MÉNDEZ J A et al. Optical properties of scandium films in the far and the extreme ultraviolet[J]. Applied Optics, 43, 3271-3278(2004).
[45] FERNÁNDEZ-PEREA M, AZNÁREZ J A, LARRUQUERT J I et al. Transmittance and extinction coefficient of Ce films measured
[46] LARRUQUERT J I, FERNÁNDEZ-PEREA M, AZNÁREZ J A et al. Determination of the transmittance and extinction coefficient of Yb films in the 23-1700 eV range[C]. Components, 6317(2006).
[47] FERNÁNDEZ-PEREA M, AZNÁREZ J A, LARRUQUERT J I et al. Transmittance and optical constants of Ce films in the 6-1200eV spectral range[J]. Journal of Applied Physics, 103(2008).
[48] FERNÁNDEZ-PEREA M, VIDAL-DASILVA M, AZNÁREZ J A et al. Transmittance and optical constants of Pr films in the 4-1600eV spectral range[J]. Journal of Applied Physics, 103, 113515(2008).
[49] FERNÁNDEZ-PEREA M, VIDAL-DASILVA M, AZNÁREZ J A et al. Transmittance and optical constants of Eu films from 8.3 to 1400 eV[J]. J Appl Phys, 104, 123527(2008).
[50] VIDAL-DASILVA M, FERNÁNDEZ-PEREA M, AZNÁREZ J A et al. Transmittance and optical constants of Tm films in the 2.75-1600 eV spectral range[J]. Journal of Applied Physics, 105, 103110(2009).
[51] FERNÁNDEZ-PEREA M, VIDAL-DASILVA M, LARRUQUERT J I et al. Optical constants of evaporation-deposited silicon monoxide films in the 7.1-800 eV photon energy range[J]. Journal of Applied Physics, 105, 113505(2009).
[52] GARCÍA-CORTÉS S, RODRÍGUEZ-DE MARCOS L, LARRUQUERT J I et al. Transmittance and optical constants of Lu films in the 3-1800 eV spectral range[J]. Journal of Applied Physics, 108(2010).
[53] FERNÁNDEZ-PEREA M, LARRUQUERT J I, AZNÁREZ J A et al. Transmittance and optical constants of Ho films in the 3-1340 eV spectral range[J]. Journal of Applied Physics, 109(2011).
[54] RODRÍGUEZ-DE MARCOS L, LARRUQUERT J I, AZNÁREZ J A et al. Transmittance and optical constants of Sr films in the 6-1220 eV spectral range[J]. Journal of Applied Physics, 111, 113533(2012).
[55] USPENSKII Y A, SEELY J F, POPOV N L et al. Efficient method for the determination of extreme-ultraviolet optical constants in reactive materials: application to scandium and titanium[J]. Journal of the Optical Society of America A, 21, 298-305(2004).
[56] SEELY J F, USPENSKII Y A, KJORNRATTANAWANICH B et al. Coated photodiode technique for the determination of the optical constants of reactive elements: La and Tb[C]. Components, 6317(2006).
[57] FERNÁNDEZ-PEREA M, SOUFLI R, ROBINSON J C et al. Triple-wavelength, narrowband Mg/SiC multilayers with corrosion barriers and high peak reflectance in the 25-80 nm wavelength region[J]. Optics Express, 20, 24018-24029(2012).
[58] VIDAL-DASILVA M, FERNÁNDEZ-PEREA M, LARRUQUERT J I et al. Narrowband multilayer mirrors for the extreme ultraviolet spectral range of 50 to 95 nm[C], 7448(2009).
[59] ZHU J T, ZHOU S K, LI H C et al. Comparison of Mg-based multilayers for solar He II radiation at 30.4 nm wavelength[J]. Applied Optics, 49, 3922-3925(2010).
[60] EJIMA T, YAMAZAKI A, BANSE T et al. Aging and thermal stability of Mg/SiC and Mg/Y2O3 reflection multilayers in the 25-35 nm region[J]. Applied Optics, 44, 5446-5453(2005).
[61] ZHU J T, WANG Z S, ZHANG Z et al. High reflectivity multilayer for He-II radiation at 30.4 nm[J]. Applied Optics, 47, C310-C314(2008).
[62] YOSHIKAWA I, MURACHI T, TAKENAKA H et al. Multilayer coating for 30.4 nm[J]. Review of Scientific Instruments, 76(2005).
[63] AQUILA A, SALMASSI F, LIU Y W et al. Tri-material multilayer coatings with high reflectivity and wide bandwidth for 25 to 50 nm extreme ultraviolet light[J]. Optics Express, 17, 22102-22107(2009).
[64] LI H C, ZHU J T, WANG Z S et al. Asymmetrical diffusion at interfaces of Mg/SiC multilayers[J]. Optical Materials Express, 3, 546-555(2013).
[65] BOERNER P, EDWARDS C, LEMEN J et al. Initial calibration of the atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO)[J]. Solar Physics, 275, 41-66(2012).
[66] SOUFLI R, FERNÁNDEZ-PEREA M, BAKER S L et al. Spontaneously intermixed Al-Mg barriers enable corrosion-resistant Mg/SiC multilayer coatings[J]. Applied Physics Letters, 101(2012).
[67] PELIZZO M, FINESCHI S, CORSO A et al. Long-term stability of Mg/SiC multilayers[J]. Optical Engineering, 51(2012).
[68] ZUEV S Y, KUZIN S V, POLKOVNIKOV V N et al. Componentry of reflection optics for application in the tesis X-ray astrophysics experiment[J]. Bulletin of the Russian Academy of Sciences: Physics, 74, 50-52(2010).
[69] BOGACHEV S A, CHKHALO N I, KUZIN S V et al. Advanced materials for multilayer mirrors for extreme ultraviolet solar astronomy[J]. Applied Optics, 55, 2126-2135(2016).
[70] POLKOVNIKOV V N, CHKHALO N I, PLESHKOV R S et al. Stable high-reflection Be/Mg multilayer mirrors for solar astronomy at 30.4 nm[J]. Optics Letters, 44, 263-266(2019).
[71] USPENSKII Y A, LEVASHOV V E, VINOGRADOV A V et al. High-reflectivity multilayer mirrors for a vacuum-ultraviolet interval of 35-50nm[J]. Optics Letters, 23, 771-773(1998).
[72] YULIN S A, SCHAEFERS F, FEIGL T et al. Enhanced reflectivity and stability of Sc/Si multilayers[C], 5193, 155-163(2004).
[73] GAUTIER J, DELMOTTE F, BRIDOU F et al. Characterization and optimization of magnetron sputtered Sc/Si multilayers for extreme ultraviolet optics[J]. Applied Physics A, 88, 719-725(2007).
[74] VORONOV D L, ZUBAREV E N, KONDRATENKO V V et al. Study of fast diffusion species in Sc/Si multilayers by W-based marker analysis[J]. Thin Solid Films, 513, 152-158(2006).
[75] ZHU J T, ZHANG J Y, JIANG H et al. Interface study on the effect of carbon and boron carbide diffusion barriers in Sc/Si multilayer system[J]. ACS Applied Materials & Interfaces, 12, 25400-25408(2020).
[76] GAUTIER J, DELMOTTE F, ROULLIAY M et al. Performances and stability of Sc/Si multilayers with barrier layers for wavelengths around 46 nm[C], 5963(2005).
[77] PERSHYN Y P, ZUBAREV E N, KONDRATENKO V V et al. Reactive diffusion in Sc/Si multilayer X-ray mirrors with CrB2 barrier layers[J]. Applied Physics A, 103, 1021-1031(2011).
[78] QI R Z, WU J L, YU J et al. Narrowband EUV Sc/Si multilayer for the solar upper transition region imager at 46.5 nm[J]. Research in Astronomy and Astrophysics, 23, 105002(2023).
[79] WU J L, QI R Z, ZHANG Z et al. Structural and optical properties of narrowband Sc/Si multilayer at 46.5 nm[J]. Frontiers in Physics, 10, 933301(2022).
[80] DELMOTTE F, DEHLINGER M, BOURASSIN-BOUCHET C et al. Multilayer optics for coherent EUV/X-ray laser sources[C], 9589(2015).
[81] REBELLATO J, SOUFLI R, MELTCHAKOV E et al. High efficiency Al/Sc-based multilayer coatings in the EUV wavelength range above 40 nanometers[J]. Optics Letters, 45, 869-872(2020).
[82] CHKHALO N, POLKOVNIKOV V, SALASH CHENKO N et al. Reflecting properties of narrowband Si/Al/Sc multilayer mirrors at 58.4 nm[J]. Optics Letters, 45, 4666-4669(2020).
[83] REBELLATO J, SOUFLI R, MELTCHAKOV E et al. Optical, structural and aging properties of Al/Sc-based multilayers for the extreme ultraviolet[J]. Thin Solid Films, 735, 138873(2021).
[84] CHKHALO N I, DROZDOV M N, LOPATIN A Y et al. Study of the temporal stability of the reflection coefficient in the vicinity of 58.4nm of narrow-band Sc/Al mirrors with Si or ScN interlayers and a MoSi2 protective cap layer[J]. Thin Solid Films, 783, 140047(2023).
[85] WINDT D L, SEELY J F, KJORNRATTANAWANICH B et al. Terbium-based extreme ultraviolet multilayers[J]. Optics Letters, 30, 3186-3188(2005).
[86] KJORNRATTANAWANICH B, WINDT D L, SEELY J F et al. SiC/Tb and Si/Tb multilayer coatings for extreme ultraviolet solar imaging[J]. Applied Optics, 45, 1765-1772(2006).
[87] KJORNRATTANAWANICH B, WINDT D L, SEELY J F. Normal-incidence silicon–gadolinium multilayers for imaging at 63 nm wavelength[J]. Optics Letters, 33, 965-967(2008).
[88] WINDT D L, BELLOTTI J A, KJORNRATTANAWANICH B et al. Performance optimization of Si/Gd extreme ultraviolet multilayers[J]. Applied Optics, 48, 5502-5508(2009).
[89] VIDAL-DASILVA M, FERNANDEZ-PEREA M, MENDEZ J A et al. Narrowband multilayer mirrors for the extreme ultraviolet spectral range of 50 to 95 nm[J]. Opt Express, 17, 22773-22784(2009).
[90] POLKOVNIKOV V N, CHKHALO N I, MELTCHAKOV E et al. Stable multilayer reflective coatings for λ(HeI)=58.4 nm for the KORTES solar telescope[J]. Technical Physics Letters, 45, 85-88(2019).
[91] LARRUQUERT J I, KESKI-KUHA R A M. Sub-quarter-wave multilayer coatings with high reflectance in the extreme ultraviolet[J]. Applied Optics, 41, 5398-5404(2002).
[92] NILSEN J. Designing a high-reflectivity normal-incidence Ge/Si multilayer X-ray mirror for the 44–50 nm wavelength range[J]. OSA Continuum, 3, 3460-3467(2020).
Get Citation
Copy Citation Text
Bo LAI, Li JIANG, Runze Qi, Zhanshan WANG. Research developments of extreme ultra-violet multilayers for 40-90 nm[J]. Optics and Precision Engineering, 2024, 32(9): 1293
Category:
Received: Apr. 17, 2024
Accepted: --
Published Online: Jun. 2, 2024
The Author Email: Zhanshan WANG (wangzs@tongji.edu.cn)