Chinese Journal of Lasers, Volume. 50, Issue 11, 1101002(2023)

Advances and Challenges in Intelligent Optical Computing Based on Laser Cavities

Jiawei Wu1,2, Hao Wang1,2, Xing Fu1,2, and Qiang Liu1,2、*
Author Affiliations
  • 1Department of Precision Instrument, Tsinghua University, Beijing 100084, China
  • 2Key Laboratory Photonic Control Technology, Ministry of Education, Tsinghua University, Beijing 100084, China
  • show less
    References(95)

    [1] Li C, Zhang X, Li J W et al. The challenges of modern computing and new opportunities for optics[J]. PhotoniX, 2, 1-31(2021).

    [2] Gyongyosi L, Imre S. A survey on quantum computing technology[J]. Computer Science Review, 31, 51-71(2019).

    [3] Adleman L M. Molecular computation of solutions to combinatorial problems[J]. Science, 266, 1021-1024(1994).

    [4] Okamoto A, Tanaka K, Saito I. DNA logic gates[J]. Journal of the American Chemical Society, 126, 9458-9463(2004).

    [5] Ivanov D, Chezhegov A, Kiselev M et al. Neuromorphic artificial intelligence systems[J]. Frontiers in Neuroscience, 16, 959626(2022).

    [6] Zhang W Q, Gao B, Tang J S et al. Neuro-inspired computing chips[J]. Nature Electronics, 3, 371-382(2020).

    [7] Marković D, Mizrahi A, Querlioz D et al. Physics for neuromorphic computing[J]. Nature Reviews Physics, 2, 499-510(2020).

    [8] Shastri B J, Tait A N, de Lima T F et al. Photonics for artificial intelligence and neuromorphic computing[J]. Nature Photonics, 15, 102-114(2021).

    [9] Lugt A V. Signal detection by complex spatial filtering[J]. IEEE Transactions on Information Theory, 10, 139-145(1964).

    [10] Weaver C S, Goodman J W. A technique for optically convolving two functions[J]. Applied Optics, 5, 1248-1249(1966).

    [11] Shen Y C, Harris N C, Skirlo S et al. Deep learning with coherent nanophotonic circuits[J]. Nature Photonics, 11, 441-446(2017).

    [12] Tait A N, de Lima T F, Zhou E et al. Neuromorphic photonic networks using silicon photonic weight banks[J]. Scientific Reports, 7, 1-10(2017).

    [13] Feldmann J, Youngblood N, Wright C D et al. All-optical spiking neurosynaptic networks with self-learning capabilities[J]. Nature, 569, 208-214(2019).

    [14] Lin X, Rivenson Y, Yardimci N T et al. All-optical machine learning using diffractive deep neural networks[J]. Science, 361, 1004-1008(2018).

    [15] Li J X, Mengu D, Luo Y et al. Class-specific differential detection in diffractive optical neural networks improves inference accuracy[J]. Advanced Photonics, 1, 046001(2019).

    [16] Yan T, Wu J M, Zhou T K et al. Fourier-space diffractive deep neural network[J]. Physical Review Letters, 123, 023901(2019).

    [17] Vandoorne K, Dierckx W, Schrauwen B et al. Toward optical signal processing using photonic reservoir computing[J]. Optics Express, 16, 11182-11192(2008).

    [18] Vandoorne K, Mechet P, Van Vaerenbergh T et al. Experimental demonstration of reservoir computing on a silicon photonics chip[J]. Nature Communications, 5, 1-6(2014).

    [19] Brunner D, Fischer I. Reconfigurable semiconductor laser networks based on diffractive coupling[J]. Optics Letters, 40, 3854-3857(2015).

    [20] Utsunomiya S, Takata K, Yamamoto Y. Mapping of Ising models onto injection-locked laser systems[J]. Optics Express, 19, 18091-18108(2011).

    [21] Wang Z, Marandi A, Wen K et al. A coherent Ising machine based on degenerate optical parametric oscillators[J]. Physical Review A, 88, 063853(2013).

    [22] Marandi A, Wang Z, Takata K et al. Network of time-multiplexed optical parametric oscillators as a coherent Ising machine[J]. Nature Photonics, 8, 937-942(2014).

    [23] Kaelbling L P, Littman M L, Moore A W. Reinforcement learning: a survey[J]. Journal of Artificial Intelligence Research, 4, 237-285(1996).

    [24] Kuroda K, Kato H, Kim S J et al. Improving throughput using multi-armed bandit algorithm for wireless LANs[J]. Nonlinear Theory and Its Applications, IEICE, 9, 74-81(2018).

    [25] Kroemer O B, Detry R, Piater J et al. Combining active learning and reactive control for robot grasping[J]. Robotics and Autonomous Systems, 58, 1105-1116(2010).

    [26] Herbert R. Some aspects of the sequential design of experiments[J]. Bulletin of the American Mathematical Society, 58, 527-536(1952).

    [27] Auer P, Cesa-Bianchi N, Fischer P. Finite-time analysis of the multiarmed bandit problem[J]. Machine Learning, 47, 235-256(2002).

    [28] Sciamanna M, Shore K A. Physics and applications of laser diode chaos[J]. Nature Photonics, 9, 151-162(2015).

    [29] Naruse M, Terashima Y, Uchida A et al. Ultrafast photonic reinforcement learning based on laser chaos[J]. Scientific Reports, 7, 1-10(2017).

    [30] Uchida A, Amano K, Inoue M et al. Fast physical random bit generation with chaotic semiconductor lasers[J]. Nature Photonics, 2, 728-732(2008).

    [31] Goodfellow I J, Pouget-Abadie J, Mirza M et al. Generative adversarial nets[C], 2672-2680(2014).

    [32] Naruse M, Matsubara T, Chauvet N et al. Generative adversarial network based on chaotic time series[J]. Scientific Reports, 9, 1-9(2019).

    [33] Naruse M, Mihana T, Hori H et al. Scalable photonic reinforcement learning by time-division multiplexing of laser chaos[J]. Scientific Reports, 8, 1-16(2018).

    [34] Mihana T, Mitsui Y, Takabayashi M et al. Decision making for the multi-armed bandit problem using lag synchronization of chaos in mutually coupled semiconductor lasers[J]. Optics Express, 27, 26989-27008(2019).

    [35] Takeuchi S, Hasegawa M, Kanno K et al. Dynamic channel selection in wireless communications via a multi-armed bandit algorithm using laser chaos time series[J]. Scientific Reports, 10, 1574(2020).

    [36] Ma Y T, Xiang S Y, Guo X X et al. Time-delay signature concealment of chaos and ultrafast decision making in mutually coupled semiconductor lasers with a phase-modulated Sagnac loop[J]. Optics Express, 28, 1665-1678(2020).

    [37] Han Y N, Xiang S Y, Wang Y et al. Generation of multi-channel chaotic signals with time delay signature concealment and ultrafast photonic decision making based on a globally-coupled semiconductor laser network[J]. Photonics Research, 8, 1792-1799(2020).

    [38] Mihana T, Fujii K, Kanno K et al. Laser network decision making by lag synchronization of chaos in a ring configuration[J]. Optics Express, 28, 40112-40130(2020).

    [39] Duan Z C, Li A H, Okada N et al. User pairing using laser chaos decision maker for NOMA systems[J]. Nonlinear Theory and Its Applications IEICE, 13, 72-83(2022).

    [40] Takatomo M, Kazutaka K, Makoto N et al. Photonic decision making for solving competitive multi-armed bandit problem using semiconductor laser networks[J]. Nonlinear Theory and Its Applications, IEICE, 13, 582-597(2022).

    [41] Iwami R, Mihana T, Kanno K et al. Controlling chaotic itinerancy in laser dynamics for reinforcement learning[J]. Science Advances, 8, eabn8325(2022).

    [42] Homma R, Kochi S, Niiyama T et al. On-chip photonic decision maker using spontaneous mode switching in a ring laser[J]. Scientific Reports, 9, 1-9(2019).

    [43] Maass W, Natschläger T, Markram H. Real-time computing without stable states: a new framework for neural computation based on perturbations[J]. Neural Computation, 14, 2531-2560(2002).

    [44] Jaeger H, Haas H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication[J]. Science, 304, 78-80(2004).

    [45] Porte X, Skalli A, Nasibeh H et al. A complete, parallel and autonomous photonic neural network in a semiconductor multimode laser[J]. Journal of Physics: Photonics, 3, 024017(2021).

    [46] Skalli A, Porte X, Haghighi N et al. Computational metrics and parameters of an injection-locked large area semiconductor laser for neural network computing[J]. Optical Materials Express, 12, 2793-2804(2022).

    [47] Appeltant L, Soriano M C, van der Sande G et al. Information processing using a single dynamical node as complex system[J]. Nature Communications, 2, 1-6(2011).

    [48] Larger L, Soriano M C, Brunner D et al. Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing[J]. Optics Express, 20, 3241-3249(2012).

    [49] Paquot Y, Duport F, Smerieri A et al. Optoelectronic reservoir computing[J]. Scientific Reports, 2, 1-6(2012).

    [50] Duport F, Schneider B, Smerieri A et al. All-optical reservoir computing[J]. Optics Express, 20, 22783-22795(2012).

    [51] Brunner D, Soriano M C, Mirasso C R et al. Parallel photonic information processing at gigabyte per second data rates using transient states[J]. Nature Communications, 4, 1-7(2013).

    [52] Nguimdo R M, Verschaffelt G, Danckaert J et al. Simultaneous computation of two independent tasks using reservoir computing based on a single photonic nonlinear node with optical feedback[J]. IEEE Transactions on Neural Networks and Learning Systems, 26, 3301-3307(2015).

    [53] Nguimdo R M, Lacot E, Jacquin O et al. Prediction performance of reservoir computing systems based on a diode-pumped erbium-doped microchip laser subject to optical feedback[J]. Optics Letters, 42, 375-378(2017).

    [54] Vatin J, Rontani D, Sciamanna M. Enhanced performance of a reservoir computer using polarization dynamics in VCSELs[J]. Optics Letters, 43, 4497-4500(2018).

    [55] Vatin J, Rontani D, Sciamanna M. Experimental reservoir computing using VCSEL polarization dynamics[J]. Optics Express, 27, 18579-18584(2019).

    [56] Guo X X, Xiang S Y, Zhang Y H et al. Four-channels reservoir computing based on polarization dynamics in mutually coupled VCSELs system[J]. Optics Express, 27, 23293-23306(2019).

    [57] Gu B L, Xiang S Y, Guo X X et al. Enhanced prediction performance of a time-delay reservoir computing system based on a VCSEL by dual-training method[J]. Optics Express, 30, 30779-30790(2022).

    [58] Appeltant L, van der Sande G, Danckaert J et al. Constructing optimized binary masks for reservoir computing with delay systems[J]. Scientific Reports, 4, 1-5(2014).

    [59] Soriano M C, Ortín S, Brunner D et al. Optoelectronic reservoir computing: tackling noise-induced performance degradation[J]. Optics Express, 21, 12-20(2013).

    [61] Nakayama J, Kanno K, Uchida A. Laser dynamical reservoir computing with consistency: an approach of a chaos mask signal[J]. Optics Express, 24, 8679-8692(2016).

    [62] Kuriki Y, Nakayama J, Takano K et al. Impact of input mask signals on delay-based photonic reservoir computing with semiconductor lasers[J]. Optics Express, 26, 5777-5788(2018).

    [63] Takano K, Sugano C, Inubushi M et al. Compact reservoir computing with a photonic integrated circuit[J]. Optics Express, 26, 29424-29439(2018).

    [64] Sugano C, Kanno K, Uchida A. Reservoir computing using multiple lasers with feedback on a photonic integrated circuit[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 1500409(2020).

    [65] Hasegawa H, Kanno K, Uchida A. Parallel and deep reservoir computing using semiconductor lasers with optical feedback[J]. Nanophotonics, 12, 869-881(2023).

    [66] Johnson M W, Amin M H S, Gildert S et al. Quantum annealing with manufactured spins[J]. Nature, 473, 194-198(2011).

    [67] Yamaoka M, Yoshimura C, Hayashi M et al. A 20k-spin Ising chip to solve combinatorial optimization problems with CMOS annealing[J]. IEEE Journal of Solid-State Circuits, 51, 303-309(2016).

    [69] Takata K, Utsunomiya S, Yamamoto Y. Transient time of an Ising machine based on injection-locked laser network[J]. New Journal of Physics, 14, 013052(2012).

    [70] Utsunomiya S, Namekata N, Takata K et al. Binary phase oscillation of two mutually coupled semiconductor lasers[J]. Optics Express, 23, 6029-6040(2015).

    [71] Nguyen D, Demir V, Akbulut M et al. An optical Ising machine based on multi-core fiber lasers[C], 201-202(2016).

    [72] Babaeian M, Nguyen D T, Demir V et al. A single shot coherent Ising machine based on a network of injection-locked multicore fiber lasers[J]. Nature Communications, 10, 1-11(2019).

    [73] McMahon P L, Marandi A, Haribara Y et al. A fully programmable 100-spin coherent Ising machine with all-to-all connections[J]. Science, 354, 614-617(2016).

    [74] Inagaki T, Haribara Y, Igarashi K et al. A coherent Ising machine for 2000-node optimization problems[J]. Science, 354, 603-606(2016).

    [75] Okawachi Y, Yu M J, Jang J K et al. Demonstration of chip-based coupled degenerate optical parametric oscillators for realizing a nanophotonic spin-glass[J]. Nature Communications, 11, 4119(2020).

    [76] Honjo T, Sonobe T, Inaba K et al. 100,000-spin coherent Ising machine[J]. Science Advances, 7, eabh0952(2021).

    [77] Honjo T, Inaba K, Inagaki T et al. A coherent Ising machine based on a network of 100,000 degenerate optical parametric oscillator pulses[C], 405-408(2022).

    [78] Pierangeli D, Marcucci G, Conti C. Large-scale photonic Ising machine by spatial light modulation[J]. Physical Review Letters, 122, 213902(2019).

    [79] Pierangeli D, Rafayelyan M, Conti C et al. Scalable spin-glass optical simulator[J]. Physical Review Applied, 15, 034087(2021).

    [80] Arnaud J A. Degenerate optical cavities[J]. Applied Optics, 8, 189-196(1969).

    [81] Pal V, Tradonsky C, Chriki R et al. Talbot coupling of laser arrays in a degenerate cavity[C], LTh1H.4(2015).

    [82] Chriki R, Barach G, Tradosnky C et al. Rapid and efficient formation of propagation invariant shaped laser beams[J]. Optics Express, 26, 4431-4439(2018).

    [83] Nixon M, Fridman M, Ronen E et al. Synchronized cluster formation in coupled laser networks[J]. Physical Review Letters, 106, 223901(2011).

    [84] Nixon M, Fridman M, Ronen E et al. Controlling synchronization in large laser networks[J]. Physical Review Letters, 108, 214101(2012).

    [85] Tradonsky C, Pal V, Chriki R et al. Talbot diffraction and Fourier filtering for phase locking an array of lasers[J]. Applied Optics, 56, A126-A132(2017).

    [86] Mahler S, Tradonsky C, Chriki R et al. Coupling of laser arrays with intracavity elements in the far-field[J]. OSA Continuum, 2, 2077-2084(2019).

    [87] Nixon M, Ronen E, Friesem A A et al. Observing geometric frustration with thousands of coupled lasers[J]. Physical Review Letters, 110, 184102(2013).

    [88] Pal V, Tradonsky C, Chriki R et al. Observing dissipative topological defects with coupled lasers[J]. Physical Review Letters, 119, 013902(2017).

    [89] Pal V, Mahler S, Tradonsky C et al. Rapid fair sampling of the XY spin Hamiltonian with a laser simulator[J]. Physical Review Research, 2, 033008(2020).

    [90] Mahler S, Goh M L, Tradonsky C et al. Improved phase locking of laser arrays with nonlinear coupling[J]. Physical Review Letters, 124, 133901(2020).

    [91] Gershenzon I, Arwas G, Gadasi S et al. Exact mapping between a laser network loss rate and the classical XY Hamiltonian by laser loss control[J]. Nanophotonics, 9, 4117-4126(2020).

    [92] Nixon M, Katz O, Small E et al. Real-time wavefront shaping through scattering media by all-optical feedback[J]. Nature Photonics, 7, 919-924(2013).

    [93] Tradonsky C, Gershenzon I, Pal V et al. Rapid laser solver for the phase retrieval problem[J]. Science Advances, 5, eaax4530(2019).

    [94] Tradonsky C, Mahler S, Cai G D et al. High-resolution digital spatial control of a highly multimode laser[J]. Optica, 8, 880-884(2021).

    [95] Chriki R, Mahler S, Tradonsky C et al. Real-time full-field imaging through scattering media by all-optical feedback[J]. Physical Review A, 105, 033527(2022).

    Tools

    Get Citation

    Copy Citation Text

    Jiawei Wu, Hao Wang, Xing Fu, Qiang Liu. Advances and Challenges in Intelligent Optical Computing Based on Laser Cavities[J]. Chinese Journal of Lasers, 2023, 50(11): 1101002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Feb. 1, 2023

    Accepted: Mar. 24, 2023

    Published Online: May. 29, 2023

    The Author Email: Liu Qiang (qiangliu@tsinghua.edu.cn)

    DOI:10.3788/CJL230475

    Topics