Chinese Journal of Lasers, Volume. 43, Issue 4, 416001(2016)
Development of 30 kHz Repetition Rate Swept Laser Source with Narrow Instantaneous Linewidth
[1] [1] Jia M Y, Cui S S, Chen X Y, et al.. Image reconstruction method for laminar optical tomography with only a single Monte-Carlo simulation [J]. Chinese Optics Letters, 2014, 12(3): 031702.
[2] [2] Su Y, Yao X S, Meng Z, et al.. Effect of temperature on noninvasive blood glucose monitoring in vivo using optical coherence tomography [J]. Chinese Optics Letters, 2014, 12(11): 111701.
[3] [3] Wang Ling, Tu Pei, Shi Ran, et al.. Quantitative evaluation of three-dimensional bio-printed hydrogel scaffolds by optical coherence tomography[J]. Chinese J Lasers, 2015, 42(8): 0804003.
[4] [4] Zhang Xianling, Gao Wanrong, Chen Chaoliang, et al.. Extraction and compensation for depth-resolved phase error in spectral domain optical coherence tomography[J]. Chinese J Lasers, 2014, 41(2): 0204002.
[5] [5] Bian Haiyi, Gao Wanrong, Zhang Xianling, et al.. Reconstruction method based on the detected matrix for spectral-domain optical coherence tomography[J]. Acta Optica Sinica, 2014, 34(2): 0211003.
[6] [6] Fercher A F, Drexler W, Hitzenberger C K, et al.. Optical coherence tomography - principles and applications[J]. Reports on Progress in Physics, 2003, 66(2): 239-303.
[7] [7] Moon S, Dy K. Ultra-high-speed optical coherence tomography with a stretched pulse super-continuum source[J]. Optics Express, 2006, 14(24): 11575-11584.
[8] [8] Okabe Y, Sasaki Y, Ueno M, et al.. 200 kHz swept light source equipped with KTN deflector for optical coherence tomography[J]. Electronics Letters, 2012, 48(4): 201-202.
[9] [9] Yun S H. Extended-cavity semiconductor wavelength-swept laser for biomedical imaging[J]. Photonics Technology Letters, 2004, 16 (1): 293-295.
[10] [10] Yun S H, Boudoux C, Tearney G J, et al.. High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter[J]. Optics Letters, 2003, 28(20): 1981-1983.
[11] [11] Goldberg B D. Miniature swept source for point of care optical frequency domain imaging[J]. Optics Express, 2009, 17(5): 3619-3629.
[12] [12] Huber R. Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: Design and scaling principles[J]. Optics Express, 2005, 13(13): 3513-3528.
[13] [13] Liu A Q, Zhang X M. A review of MEMS external-cavity tunable lasers[J]. Journal of Micromechanics & Microengineering, 2007, 17(1): R1-R13.
[14] [14] Totsuka K, Isamoto K, Sakai T, et al.. MEMS scanner based swept source laser for optical coherence tomography[C]. SPIE, 2010, 7554: 75542Q.
[15] [15] Vuong B, Sun C, Harduar M K, et al..
[16] [16] kHz MEMS based swept source for optical coherence tomography imaging[C]. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011: 6134-6137.
[17] [17] Chen Minghui, Ding Zhihua, Wang Cheng, et al.. Fiber Fabry-Perot tunable filter based Fourier domain mode locking swept laser source [J]. Acta Physica Sinica, 2013, 62(6): 068703.
[18] [18] Kraetschmer T, Sanders S T. Ultrastable Fourier domain mode locking observed in a laser sweeping 1363.8-1367.3 nm[C]. Conference on Lasers & Electro-Optics, 2009: 1-2.
[19] [19] Kraetschmer T. Hyperspectral laser for spectroscopic measurements in the near-infrared[D]. Madison: University of Wisconsin-Madison, 2009.
[20] [20] Biedermann B R, Wieser W, Eigenwillig C M, et al.. Dispersion, coherence and noise of Fourier domain mode locked lasers[J]. Optics Express, 2009, 17(12): 9947-9961.
[21] [21] Kashchenko A A. Stability of CW solutions of the FDML laser[J]. P. g. demidov Yaroslavl State University, 2014, 21(3): 35-54.
[22] [22] Zhi Z, Qin W, Wang J, et al.. 4D optical coherence tomography-based micro-angiography achieved by 1.6-MHz FDML swept source[J]. Optics Letters, 2015, 40(8): 1779-1782.
[23] [23] Sergio C, Ignacio F M, Montero J A, et al.. Direct comparison of spectral-domain and swept-source OCT in the measurement of choroidal thickness in normal eyes[J]. British Journal of Ophthalmology, 2014, 98(3): 334-338.
Get Citation
Copy Citation Text
Chen Minghui, Li Hao, Fan Yunping. Development of 30 kHz Repetition Rate Swept Laser Source with Narrow Instantaneous Linewidth[J]. Chinese Journal of Lasers, 2016, 43(4): 416001
Category: Optical Design and Fabrication
Received: Aug. 20, 2015
Accepted: --
Published Online: Mar. 29, 2016
The Author Email: Minghui Chen (cmhui.43@163.com)