Acta Laser Biology Sinica, Volume. 32, Issue 4, 289(2023)

Progress in the Study of Bacterial Spectral Detection Methods and Molecular Mechanisms

HU Dian and YIN Huijuan
Author Affiliations
  • [in Chinese]
  • show less
    References(41)

    [1] [1] DEUSENBERY C, WANG Y, SHUKLA A. Recent innovations in bacterial infection detection and treatment[J]. ACS Infectious Diseases, 2018, 7(4): 695-720.

    [2] [2] SCHIFF D, AVIV H, ROSENBAUM E, et al. Spectroscopic meth-od for fast and accurate group A Streptococcus bacteria detection[J]. Analytical Chemistry, 2016, 88(4): 2164-2169.

    [3] [3] WANG W, KANG S, VIKESLAND P J. Surface-enhanced raman spectroscopy of bacterial metabolites for bacterial growth monitor-ing and diagnosis of viral infection[J]. Environmental Science & Technology, 2021, 55(13): 9119-9128.

    [4] [4] WANG K, CHEN L, MA X, et al. Arcobacter identification and species determination using raman spectroscopy combined with neural networks[J]. Applied and Environmental Microbiology, 2020, 86(20): e00924-20.

    [5] [5] ESPAGNON I, OSTROVSKII D, MATHEY R, et al. Direct iden-tification of clinically relevant bacterial and yeast microcolonies and macrocolonies on solid culture media by Raman spectroscopy[J]. Journal of Biomedical Optics, 2014, 19(2): 027004.

    [6] [6] REBRO.OVá K, .ILER M, SAMEK O, et al. Rapid identifica-tion of Staphylococci by Raman spectroscopy[J]. Scientific Re-ports, 2017, 7(1): 14846.

    [7] [7] LU J, LI X, ZHANG Y, et al. Two-dimensional spectroscopy at terahertz frequencies[J]. Topics in Current Chemistry (Cham), 2018, 376(1): 6.

    [8] [8] YANG X, WEI D, YAN S, et al. Rapid and label-free detection and assessment of bacteria by terahertz time-domain spectroscopy[J]. Journal of Biophotonics, 2016, 9(10): 1050-1058.

    [9] [9] YOON SA, CHAS H, JUN S W, et al. Identifying different types of microorganisms with terahertz spectroscopy[J]. Biomedical Optics Express, 2020, 11(1): 406-416.

    [10] [10] BERRIER A, SCHAAFSMA M C, NONGLATON G, et al. Selec-tive detection of bacterial layers with terahertz plasmonic antennas[J]. Biomedical Optics Express, 2012, 3(11): 2937-2949.

    [11] [11] YANG X, YANG K, ZHAO X, et al. Terahertz spectroscopy for the isothermal detection of bacterial DNA by magnetic bead-based rolling circle amplification[J]. Analyst, 2017, 142(24): 4661-4669.

    [12] [12] MALINA T, KOEHORST R, BíNA D, et al. Superradiance of bacteriochlorophyll c aggregates in chlorosomes of green photo-synthetic bacteria[J]. Scientific Reports, 2021, 11(1): 8354.

    [13] [13] ZENG L, LIAO Z, WANG X H. Geometry effects on light-har-vesting complex’s light absorption and energy transfer in purple bacteria[J]. Photochemistry and Photobiology, 2019, 95(6): 1352-1359.

    [15] [15] GE M Y, LI B, WANG L, et al. Differentiation in MALDI-TOF MS and FTIR spectra between two pathovars of Xanthomonas oryzae[J] . Spectrochimica Acta A, Molecular and Biomolecular Spectroscopy, 2014, 133: 730-734.

    [16] [16] CONFORTE V, OTERO L H, TOUM L, et al. Pr-favoured variants of the bacteriophytochrome from the plant pathogen Xanthomonas campestris hint on light regulation of virulence-associated mecha-nisms[J] . The FEBS Journal, 2021, 288(20): 5986-6002.

    [17] [17] BONOMI H R, TOUM L, SYCZ G, et al. Xanthomonas camp-estris attenuates virulence by sensing light through a bacterio-phytochrome photoreceptor[J] . EMBO Reports, 2016, 17(11): 1565-1577.

    [18] [18] ABATEDAGA I, VALLE L, GOLIC A E, et al. Integration of temperature and blue-light sensing in Acinetobacter baumannii through the BlsA sensor[J] . Photochemistry and Photobiology, 2017, 93(3): 805-814.

    [19] [19] ENDRES S, WINGEN M, TORRA J, et al. An optogenetic tool-box of LOV-based photosensitizers for light-driven killing of bac-teria[J] . Scientific Reports, 2018, 8(1): 15021.

    [20] [20] BATTISTI A, MORICI P, GHETTI F, et al. Spectroscopic char-acterization and fluorescence imaging of Helicobacter pylori endogenous porphyrins[J] . Biophysical Chemistry, 2017, 229: 19-24.

    [21] [21] MORICI P, BATTISTI A, TORTORA G, et al. The in vitro photo-inactivation of Helicobacter pylori by a novel LED-based device[J] . Frontiers in Microbiology, 2020, 11: 283.

    [22] [22] CIEPLIK F, SP.TH A, LEIBL C, et al. Blue light kills Aggrega-tibacter actinomycetemcomitans due to its endogenous photosen-sitizers[J] . Clinical Oral Investigations, 2014, 18(7): 1763-1769.

    [23] [23] PLAVSKII V Y, MIKULICH A V, TRETYAKOVA A I, et al. Por-phyrins and flavins as endogenous acceptors of optical radiation of blue spectral region determining photoinactivation of microbial cells[J] . Journal of Photochemistry and Photobiology B, Biology, 2018, 183: 172-183.

    [24] [24] GUFFEY J S, WILBORN J. In vitro bactericidal effects of 405 nm and 470 nm blue light[J] . Photomedicine and Laser Surgery, 2006, 24(6): 684-688.

    [25] [25] ABATEDAGA I, PEREZ MORA B, TUTTOBENE M, et al. A characterization of BLUF-photoreceptors present in Acinetobacter nosocomialis[J] . PLoS One, 2022, 17(4): e0254291.

    [26] [26] DAVIS S J, VENER A V, VIERSTRA R D. Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic eubacte-ria[J] . Science (New York, NY), 1999, 286(5449): 2517-2520.

    [27] [27] VAN DER HORST M A, KEY J, HELLINGWERF K J, et al. Photosensing in chemotrophic, non-phototrophic bacteria: let there be light sensing too[J] . Trends in Microbiology, 2007, 15(12): 554-562.

    [28] [28] TANAKA T, SINGH M, SHIHOYA W, et al. Structural basis for unique color tuning mechanism in heliorhodopsin[J] . Biochemi-cal and Biophysical Research Communications, 2020, 533(3): 262-267.

    [29] [29] KIM S H, CHUON K, CHO S G, et al. Color-tuning of natural variants of heliorhodopsin[J] . Scientific Reports, 2021, 11(1): 854.

    [30] [30] PURCELL E B, CROSSON S. Photoregulation in prokaryotes[J] . Current Opinion in Microbiology, 2008, 11(2): 168-178.

    [31] [31] STEPANENKO O V, STEPANENKO O V, SHPIRONOK O G, et al. Near-infrared markers based on bacterial phytochromes with phycocyanobilin as a chromophore[J] . International Journal of Molecular Sciences, 2019, 20(23): 6067.

    [32] [32] LOSI A, G.RTNER W. Bacterial bilin-and flavin-binding photo-receptors[J] . Photochemical & Photobiological Sciences, 2008, 7(10): 1168-1178.

    [33] [33] KIM S, NAKASONE Y, TAKAKADO A, et al. Wavelength-dependent photoreaction of PYP from Rhodobacter capsulatus[J] . Biochemistry, 2020, 59(51): 4810-4821.

    [34] [34] CROSSON S, RAJAGOPAL S, MOFFAT K. The LOV domain family: photoresponsive signaling modules coupled to diverse out-put domains[J] . Biochemistry, 2003, 42(1): 2-10.

    [35] [35] GONCHAROV I M, SMOLENTSEVA A, SEMENOV O, et al. High-resolution structure of a naturally red-shifted LOV domain[J] . Biochemical and Biophysical Research Communications, 2021, 567: 143-147.

    [36] [36] GOMELSKY M, KLUG G. BLUF: a novel FAD-binding domain involved in sensory transduction in microorganisms[J] . Trends in Biochemical Sciences, 2002, 27(10): 497-500.

    [37] [37] FUJISAWA T, TAKEUCHI S, MASUDA S, et al. Signaling-state formation mechanism of a BLUF protein PapB from the purple bacterium Rhodopseudomonas palustris studied by femtosecond time-resolved absorption spectroscopy[J] . The Journal of Physi-cal Chemistry B, 2014, 118(51): 14761-14773.

    [38] [38] LOSI A, G.RTNER W. Old chromophores, new photoactivation paradigms, trendy applications: flavins in blue light-sensing pho-toreceptors[J] . Photochemistry and Photobiology, 2011, 87(3): 491-510.

    [39] [39] JI Y, ZHANG Q, ZHANG C, et al. A fluorescent indicator for rapid detection of bacterial contamination in milk based on FAD[J] . Journal of Dairy Science, 2019, 102(4): 3011-3021.

    [40] [40] LIU Y, ZHANG Q, LI J, et al. A label-free fluorescent sensor based on FAD for selective detection of Escherichia coli[J] . Food Chemistry, 2018, 244: 306-312.

    [41] [41] BONAH E, HUANG X, AHETO J H, et al. Application of hy-perspectral imaging as a nondestructive technique for foodborne pathogen detection and characterization[J] . Foodborne Pathogens and Disease, 2019, 16(10): 712-722.

    [42] [42] WU X, LAI T, JIANG J, et al. An on-site bacterial detection strat-egy based on broad-spectrum antibacterial ε-polylysine functional-ized magnetic nanoparticles combined with a portable fluorometer[J] . Mikrochimica Acta, 2019, 186(8): 526.

    Tools

    Get Citation

    Copy Citation Text

    HU Dian, YIN Huijuan. Progress in the Study of Bacterial Spectral Detection Methods and Molecular Mechanisms[J]. Acta Laser Biology Sinica, 2023, 32(4): 289

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: May. 24, 2023

    Accepted: --

    Published Online: Jan. 26, 2024

    The Author Email:

    DOI:10.3969/j.issn.1007-7146.2023.04.001

    Topics