Acta Optica Sinica, Volume. 35, Issue 11, 1101003(2015)
A New Water Chlorophyll-a Index and Analysis of Its Application Potential
[1] [1] Li Yunmei, Huang Jiazhu, Wei Yuchun, et al.. Evaluating eutrophic state of Taihu Lake by in situ hyperspectra[J]. Environmental Science, 2006, 27(9): 1770-1775.
[2] [2] Xu Yifan, Li Yunmei, Wang Qiao, et al.. Eutrophication evaluation of three lakes and one reservoir using CCD images from the HJ-1 satellite[J]. Acta Scientiae Circumstantiae, 2011, 31(1): 81-93.
[3] [3] Jin Xiangcan, Liu Hongliang, Tu Qingying. Eutrophication of China Lakes[M]. Beijing: China Environmental Science Press, 1990: 31-50.
[4] [4] Ma Ronghua, Tang Junwu, Duan Hongtao, et al.. Progress in lake water color remote sensing [J]. Journal of Lake Sciences, 2009, 21 (2): 143-158.
[5] [5] Odermatt D, Gitelson A, Brando V E, et al.. Review of constituent retrieval in optically deep and complex waters from satellite imagery [J]. Remote Sensing of Environment, 2012, 118: 116-126.
[6] [6] Li Yunmei, Huang Jiazhu, Wei Yuchun, et al.. Inversing chlorophyll concentration of Taihu Lake by analytic model[J]. Journal of Remote Sensing, 2006, 10(2): 169-175.
[7] [7] Li Junsheng. Study on Retrieval of Inland Water Quality Parameters from Hyperspectral Remote Sensing Data by Analytical Approach — Taking Taihu Lake as an Example[D]. Beijing: Institute of Remote Sensing Application, Chinese Academy of Sciences, 2007.
[8] [8] Gordon H R, Brown O B, Jacobs M M. Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean[J]. Applied Optics, 1975, 14(2): 417-427.
[9] [9] Zhou Guanhua, Liu Qinhuo, Ma Ronghua, et al.. Inversion of chlorophyll-a concentration in turbid water of Lake Taihu based on optimized multi-spectral combination[J]. Journal of Lake Sciences, 2008, 20(2): 153-159.
[10] [10] Yang Yu, Li Yunmei, Wang Qiao, et al.. Retrieval of chlorophyll-a concentration in the turbid and eutrophic Taihu Lake[J]. Journal of Geo-Information Science, 2009, 11(5): 597-603.
[11] [11] Dall’Olmo G, Gitelson A A. Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: Experimental results[J]. Applied Optics, 2005, 44(3): 412-422.
[12] [12] Dall’Olmo G, Gitelson A A. Effect of bio-optical paramter variability and uncertainties in reflectance measurements on the remote estimation of chlorophyll-a concentration in turbid productive waters: Modeling results[J]. Applied Optics, 2006, 45(15): 3577-3592.
[13] [13] Le C F, Li Y M, Zha Y, et al.. A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China[J]. Remote Sensing of Environment, 2009, 113(6): 1175-1182.
[14] [14] O’Reilly J E, Maritorena S, Mitchell B G, et al.. Ocean color chlorophyll algorithms for SeaWiFS[J]. Journal of Geophysical Research: Oceans, 1998,103(C11): 24937-24953.
[15] [15] Guo Yulong, Li Yunmei, Zhu Li, et al.. Research of hyperspectral reconstruction based on HJ1A-CCD data[J]. Environmental Science, 2013, 34(1): 69-76.
[16] [16] Shi K, Li Y M, Li L, et al.. Remote chlorophyll-a estimates for inland waters based on a cluster-based classification[J]. Science of the Total Environment, 2013, 444: 1-15.
[18] [18] Hu C M, Lee Z, Franz B. Chlorophyll algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference [J]. Journal of Geophysical Research: Oceans, 2012,117: C01011.
[19] [19] Le C F, Hu C M, English D, et al.. Climate-driven chlorophyll-a changes in a turbid estuary: Observations from satellites and implications for management[J]. Remote Sensing of Environment, 2013, 130: 11-24.
[20] [20] Shen F, Zhou Y X, Li D J, et al.. Medium resolution imaging spectrometer (MERIS) estimation of chlorophyll-a concentration in the turbid sediment-laden waters of the Changjiang (Yangtze) estuary[J]. International Journal of Remote Sensing, 2010, 31(17-18): 4635-4650.
[21] [21] Lu Chaoping. An Collaborative Inversion Algorithm for Remotely Estimating Water Component Concentrations in Lake Taihu, Based on Consideration of Inter-Effect among Water Components[D]. Nanjing: Nanjing Normal University, 2012.
[22] [22] Gower J, King S. Validation of chlorophyll fluorescence derived from MERIS on the west coast of Canada[J]. International Journal of Remote Sensing, 2007, 28(3-4): 625-635.
[23] [23] Gower J, Hu C, Borstad G. Ocean color satellite show extensive lines of floating Sargassum in the Gulf of Mexico[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(12): 3619-3625.
[24] [24] Tang Junwu, Tian Guoliang, Wang Xiaoyong, et al.. The methods of water spectra management and analysis I: Above-water method[J]. Journal of Remote Sensing, 2004, 8(1): 37-44.
[25] [25] Keshava N, Mustard J F. Spectral unmixing[J]. IEEE Signal Processing Magazine, 2002, 19(1): 44-57.
[26] [26] Oyama Y, Matsushita B, Fukushima T, et al.. A new algorithm for estimating chlorophyll-a concentration from multi-spectral satellite data in case II waters: A simulation based on a controlled laboratory experiments[J]. International Journal of Remote Sensing, 2007, 28 (7): 1437-1453.
[27] [27] Wen Jianguang, Xiao Qing, Yang Yipeng, et al.. Spectral mixing model and its stability of chlorophyll-a concentration extraction based on hyperspectral data[J]. Advanced in Water Science, 2007, 18(2): 270-276.
[28] [28] Wen Jianguang, Xiao Qing, Liu Qinhuo, et al.. Extraction of chlorophyll-a concentration based on spectral unmixing model in Taihu Lake water[J]. Scientia Geographica Sinica, 2007, 27(1): 92-97.
[29] [29] Xiao Qing, Wen Jianguang, Liu Qinhuo, et al.. Study on spectral unmixing model and its application in extracting chlorophyll concentration of water body[J]. Journal of Remote Sensing, 2006,10(4): 559-567.
[30] [30] Liu Dazhao, Chen Chuqun, Liu Fenfen, et al.. Estimation of suspended sediment concentration at Zhujiang River Mouth based on decomposition of mixing spectrum[J]. Journal of Tropical Oceanography, 2009, 28(5): 43-48.
[31] [31] Qian Shaomeng. Research of Remote Sensing Pixel Unmixing Method and Its Application in Dianchi Water Quality Monitoring[D]. Beijing: Institute of Remote Sensing Application, Chinese Academy of Sciences, 2003.
[32] [32] Oyama Y, Matsushita B, Fukushima T, et al.. Application of spectral decomposition algorithm for mapping water quality in a turbid lake (Lake Kasumigaura, Japan) from Landsat TM data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(1): 73-85.
[33] [33] Zhang Y C, Ma R H, Duan H T, et al.. A spectral decomposition algorithm for estimating chlorophyll-a concentrations in Lake Taihu, China[J]. Remote Sensing, 2014, 6(6): 5090-5106.
[34] [34] Lu Chaoping, Lü Heng, Li Yunmei. Algorithms based on spectral decomposition algorithm for retrieval of constituents in Taihu Lake[J]. Journal of Geo-Information Science, 2011,13(5): 687-694.
[35] [35] Wang Yanfei, Li Yunmei, Lü Heng, et al.. Suitability assessment of lake water quality monitoring on waterbody images acquired by HJ- 1A hyperspectral imager: A case study of Lake Chaohu[J]. Journal of Lake Sciences, 2011, 23(5): 789-795.
[37] [37] Wang Wei, Chu Jinkui, Cui Yan, et al.. Modeling of atmospheric polarization pattern based on vector radiative transfer[J]. Chinese J Lasers, 2013, 40(5): 0513001.
[38] [38] Liu Zhonghua, Li Yunmei, Lü Heng, et al.. Inversion of suspended matter concentration in Lake Chaohu based on partial least squares regression[J]. Journal of Lake Sciences, 2011, 23(3): 357-365.
[39] [39] Guo Yulong, Li Yunmei, Lü Heng, et al.. Applicability analysis of the model for remotely estimating suspended matter concentration based on principal component dimension reduction[J]. Journal of Lake Sciences, 2013, 25(6): 892-899.
Get Citation
Copy Citation Text
Guo Yulong, Li Yunmei, Wang Qiao, Zhu Li, Lü Heng. A New Water Chlorophyll-a Index and Analysis of Its Application Potential[J]. Acta Optica Sinica, 2015, 35(11): 1101003
Category: Atmospheric Optics and Oceanic Optics
Received: Apr. 20, 2015
Accepted: --
Published Online: Nov. 3, 2015
The Author Email: Yulong Guo (gyl.18@163.com)