Acta Optica Sinica, Volume. 37, Issue 9, 0915005(2017)
Multiple Feature Fusion based on Covariance Matrix for Visual Tracking
Fig. 2. Comparison of tracking results of different features. (a) The 649th frame of Basketball sequence; (b) the 873rd frame of Liquor sequence
Fig. 4. Qualitative comparison of eight tracking algorithms. (a) Basketball; (b) Bolt; (c) David3; (d) Football1; (e) Jumping; (f) Liquor; (g) Matrix; (h) Skiing; (i) Ironman; (j) Jogging1; (k) Lemming; (l) MotorRolling
Fig. 5. Center position error curves. (a) Basketball; (b) Bolt; (c) David3; (d) Football1; (e) Jumping; (f) Liquor; (g) Matrix; (h) Skiing; (i) Ironman; (j) Jogging1; (k) Lemming; (l) MotorRolling
Fig. 6. Overlap rate curves. (a) Basketball; (b) Bolt; (c) David3; (d) Football1; (e) Jumping; (f) Liquor; (g) Matrix; (h) Skiing; (i) Ironman; (j) Jogging1; (k) Lemming; (l) MotorRolling
|
|
|
Get Citation
Copy Citation Text
Zefenfen Jin, Zhiqiang Hou, Wangsheng Yu, Xin Wang. Multiple Feature Fusion based on Covariance Matrix for Visual Tracking[J]. Acta Optica Sinica, 2017, 37(9): 0915005
Category: Machine Vision
Received: Apr. 14, 2017
Accepted: --
Published Online: Sep. 7, 2018
The Author Email: Zefenfen Jin (christine123456@163.com)