Laser & Optoelectronics Progress, Volume. 59, Issue 4, 0410009(2022)

Target Location Algorithm of Contact Network Pipe Cap Based on Improved Faster R-CNN

Guimei Gu1, Chong Chen1、*, Xiaoning Yu1, Cunjun Zhang2, Zhen Tong3, and Xiaoyun Mei1
Author Affiliations
  • 1School of electrical engineering and automation, Lanzhou Jiaotong University, Lanzhou , Gansu 730070, China
  • 2China Railway Lanzhou Bureau Group Co., Ltd., Lanzhou , Gansu 730030, China
  • 3Qingyang Power Supply Company of State Grid Gansu Electric Power Company, Qingyang , Gansu 745000, China
  • show less
    Figures & Tables(10)
    Faster R-CNN deep learning model based on VGG16
    Structure of RPN network
    Clustering. (a) Relationship between k value and accuracy; (b) clustering resultwhen k=12
    Results of four training losses. (a) VGG16 model; (b) resnet50 model; (c) resnet101 model; (d) resnet152 model
    Training loss of different feature extraction network models
    Relationship between model precision and number of iterations. (a) VGG16 model; (b) resnet50 model; (c) resnet101 model; (d) resnet152 model
    Relationship between model recall and number of iterations. (a) VGG16 model; (b) resnet50 model; (c) resnet101 model; (d) resnet152 model
    Target location results of contact network pipe cap. (a) VGG16 positioning results; (b) K-means+VGG16 positioning results; (c) resnet50 positioning results; (d) K-means+resnet50 positioning results; (e) resnet101 positioning results; (f) K-means+resnet101 positioning results; (g) resnet152 positioning results; (h) K-means+resnet152 positioning results
    • Table 1. Parameters of VGG 16 network convolution process

      View table

      Table 1. Parameters of VGG 16 network convolution process

      LayerInputConvolution kernelStep lengthOutput
      Conv3-64M×N×33×31M×N×64
      Conv 3-64M×N×643×31M×N×64
      Pool 1M×N×642×22M/2)×(N/2)×64
      Conv3-128M/2)×(N/2)×643×31M/2)×(N/2)×128
      Conv3-128M/2)×(N/2)×1283×31M/2)×(N/2)×128
      Pool 2M/2)×(N/2)×1282×22M/4)×(N/4)×128
      Conv3-256M/4)×(N/4)×1283×31M/4)×(N/4)×256
      Conv3-256M/4)×(N/4)×2563×31M/4)×(N/4)×256
      Conv3-256M/4)×(N/4)×2563×31M/4)×(N/4)×256
      Pool 3M/4)×(N/4)×2562×22M/8)×(N/8)×256
      Conv3-512M/8)×(N/8)×2563×31M/8)×(N/8)×512
      Conv3-512M/8)×(N/8)×5123×31M/8)×(N/8)×512
      Conv3-512M/8)×(N/8)×5123×31M/8)×(N/8)×512
      Pool 4M/8)×(N/8)×5122×22M/16)×(N/16)×512
      Conv3-512M/16)×(N/16)×5123×31M/16)×(N/16)×512
      Conv3-512M/16)×(N/16)×5123×31M 16)×(N/16)×512
      Conv3-512M/16)×(N/16)×5123×31M/16)×(N/16)×512
    • Table 2. Comparison of deep learning network

      View table

      Table 2. Comparison of deep learning network

      Extraction networkAccurary /%Recall /%F1 /%Detection time /s
      VGG1672.2975.0073.620.215
      K-means+VGG1681.6088.7485.020.216
      resnet5080.9283.7082.280.283
      K-means+resnet5083.1689.7886.340.283
      resnet10180.9782.6181.780.339
      K-means+resnet10182.3783.7083.020.338
      resnet15275.4979.3577.370.395
      K-means+resnet15282.5184.7883.620.395
    Tools

    Get Citation

    Copy Citation Text

    Guimei Gu, Chong Chen, Xiaoning Yu, Cunjun Zhang, Zhen Tong, Xiaoyun Mei. Target Location Algorithm of Contact Network Pipe Cap Based on Improved Faster R-CNN[J]. Laser & Optoelectronics Progress, 2022, 59(4): 0410009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Feb. 2, 2021

    Accepted: Mar. 23, 2021

    Published Online: Jan. 25, 2022

    The Author Email: Chong Chen (1334065344@qq.com)

    DOI:10.3788/LOP202259.0410009

    Topics