Chinese Journal of Liquid Crystals and Displays, Volume. 40, Issue 9, 1333(2025)

Lightweight building extraction network integrating wavelet transform and global awareness

Wen SHAO1,2, Pan SHAO1,2、*, Baogui SONG3, and Biao XIONG1,2
Author Affiliations
  • 1Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering, China Three Gorges University, Yichang 443002, China
  • 2College of Computer and Information Technology, China Three Gorges University, Yichang 443002, China
  • 3College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
  • show less
    Figures & Tables(10)
    Overall network structure of LWGNet
    Star-shared depthwise convolution block
    Efficient boundary enhancement module
    Global context-aware module. (a) GCAM module; (b) CCSA module;(c) CSSA module.
    Building extraction maps for different models on WHU dataset
    Building extraction maps for different models on Inria dataset
    • Table 1. Network model deployment

      View table
      View in Article

      Table 1. Network model deployment

      项目具体细节
      数据构成WHU:4 736张训练图像,1 036张验证图像,2 416张测试图像;Inria:9 294张训练图像,2 325张测试图像
      数据预处理WHU:标准化处理,分割为512像素×512像素;Inria:非重叠裁剪为512像素×512像素,滤除无建筑物样本
      实验平台PyTorch框架, NVIDIA GeForce RTX 4060 GPU (8 GB显存)
      优化器Adam优化器,初始学习率0.001,多阶段衰减
      损失函数边界加权二进制交叉熵损失(权重0.7)+骰子损失(权重0.3)
      训练设置批大小:4(训练)、2(验证),200训练周期
      数据増强随机旋转、水平/垂直翻转、尺度缩放等空间变换
      评估指标Precision、Recall、F1-score、IoU、FLOPs、Params、FPS
    • Table 2. Accuracy indicators of experiment results from different network models on WHU dataset

      View table
      View in Article

      Table 2. Accuracy indicators of experiment results from different network models on WHU dataset

      MethodsPrecision/%Recall/%F1/%IoU/%Params/MFLOPs/GFPS
      Swin Transformer92.8393.7993.3187.4527.1830.8822.71
      BuildFormer93.8094.3294.0688.7940.52116.3615.28
      SDSCUNet93.9294.4594.1989.0121.3229.8124.97
      EasyNet93.9794.6794.3289.253.9017.3028.67
      HDNet94.6193.9694.2889.1813.89201.379.89
      CaSaFormerNet93.8692.1593.0086.914.441.9929.93
      LWGNet94.2095.3794.7890.083.094.9330.24
    • Table 3. Accuracy indicators of experiment results from different network models on Inria dataset

      View table
      View in Article

      Table 3. Accuracy indicators of experiment results from different network models on Inria dataset

      MethodsPrecision/%Recall/%F1/%IoU/%Params/MFLOPs/GFPS
      Swin Transformer83.6888.6986.1175.6127.1830.8822.71
      BuildFormer85.7988.3887.0777.0940.52116.3615.28
      SDSCUNet86.7088.0987.3977.6021.3229.8124.97
      EasyNet87.2487.5487.3977.613.9017.3028.67
      HDNet87.6186.6487.0377.0413.89201.379.89
      CaSaFormerNet87.5185.4886.4876.194.441.9929.93
      LWGNet87.5089.2688.3779.163.094.9330.24
    • Table 4. Quantitative evaluation results of ablation experiments on the WHU dataset

      View table
      View in Article

      Table 4. Quantitative evaluation results of ablation experiments on the WHU dataset

      MethodsPrecision/%Recall/%F1/%IoU/%Params/MFLOPs/GFPS
      baseline93.0893.8993.4887.766.6013.5024.18
      baseline+EM93.9594.0794.0188.076.6013.5323.56
      baseline+GM92.4495.3593.8788.456.4312.9325.60
      baseline+SSD93.1195.3794.2389.093.265.4729.84
      baseline+EM+GM92.7695.5094.1188.886.4312.9625.16
      baseline+EM+SSD94.0494.6694.3589.303.265.5029.22
      baseline+GM+SSD93.6895.2794.4789.513.094.9031.46
      baseline+EM+SSD+CCSA94.8194.2694.5389.633.094.7929.56
      baseline+EM+SSD+CSSA94.0194.9894.5089.573.094.6229.77
      baseline+GM+EM+SSD(G=2)94.2095.3794.7890.083.094.9330.24
      baseline+GM+EM+SSD(G=1)94.4995.1494.8190.135.076.7529.27
    Tools

    Get Citation

    Copy Citation Text

    Wen SHAO, Pan SHAO, Baogui SONG, Biao XIONG. Lightweight building extraction network integrating wavelet transform and global awareness[J]. Chinese Journal of Liquid Crystals and Displays, 2025, 40(9): 1333

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 22, 2025

    Accepted: --

    Published Online: Sep. 25, 2025

    The Author Email: Pan SHAO (panshao@whu.edu.cn)

    DOI:10.37188/CJLCD.2025-0108

    Topics