Acta Optica Sinica, Volume. 42, Issue 3, 0327012(2022)

Quantum Entanglement with Photonic Orbital Angular Momentum Based on Spontaneous Parametric Down-Conversion

Xilin Wang1、*, Zhifeng Liu1, Xiaoqin Gao2, Hao Li1, Zhicheng Ren1, Chao Chen1, Bowen Dong1, Yuxiang Yang1, Zimo Cheng1, and Huitian Wang1、**
Author Affiliations
  • 1National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
  • 2Department of Physics, University of Ottawa, Ottawa K1N 6N5, Canada
  • show less
    References(119)

    [1] Bennett C H, Brassard G. Quantum cryptography: public key distribution and coin tossing[J]. Theoretical Computer Science, 560, 7-11(2014).

    [2] Mattle K, Weinfurter H, Kwiat P G et al. Dense coding in experimental quantum communication[J]. Physical Review Letters, 76, 4656-4659(1996).

    [3] Bouwmeester D, Pan J W, Mattle K et al. Experimental quantum teleportation[J]. Nature, 390, 575-579(1997).

    [4] Pan J W, Bouwmeester D, Weinfurter H et al. Experimental entanglement swapping: entangling photons that never interacted[J]. Physical Review Letters, 80, 3891-3894(1998).

    [5] Bouwmeester D, Pan J W, Daniell M et al. Observation of three-photon Greenberger-Horne-Zeilinger entanglement[J]. Physical Review Letters, 82, 1345-1349(1999).

    [6] Yin J, Cao Y, Li Y H et al. Satellite-based entanglement distribution over 1200 kilometers[J]. Science, 356, 1140-1144(2017).

    [7] Liao S K, Cai W Q, Liu W Y et al. Satellite-to-ground quantum key distribution[J]. Nature, 549, 43-47(2017).

    [8] Ren J G, Xu P, Yong H L et al. Ground-to-satellite quantum teleportation[J]. Nature, 549, 70-73(2017).

    [9] Pan J W, Daniell M, Gasparoni S et al. Experimental demonstration of four-photon entanglement and high-fidelity teleportation[J]. Physical Review Letters, 86, 4435-4438(2001).

    [10] Zhao Z, Chen Y A, Zhang A N et al. Experimental demonstration of five-photon entanglement and open-destination teleportation[J]. Nature, 430, 54-58(2004).

    [11] Lu C Y, Zhou X Q, Gühne O et al. Experimental entanglement of six photons in graph states[J]. Nature Physics, 3, 91-95(2007).

    [12] Yao X C, Wang T X, Xu P et al. Observation of eight-photon entanglement[J]. Nature Photonics, 6, 225-228(2012).

    [13] Huang Y F, Liu B H, Peng L et al. Experimental generation of an eight-photon Greenberger-Horne-Zeilinger state[J]. Nature Communications, 2, 546(2011).

    [14] Wang X L, Chen L K, Li W et al. Experimental ten-photon entanglement[J]. Physical Review Letters, 117, 210502(2016).

    [15] Chen L K, Li Z D, Yao X C et al. Observation of ten-photon entanglement using thin BiB3O6 crystals[J]. Optica, 4, 77-83(2017).

    [16] Zhong H S, Li Y, Li W et al. 12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion[J]. Physical Review Letters, 121, 250505(2018).

    [17] Wang J W, Paesani S, Ding Y H et al. Multidimensional quantum entanglement with large-scale integrated optics[J]. Science, 360, 285-291(2018).

    [18] Hu X M, Xing W B, Liu B H et al. Efficient generation of high-dimensional entanglement through multipath down-conversion[J]. Physical Review Letters, 125, 090503(2020).

    [19] Li L, Liu Z X, Ren X F et al. Metalens-array-based high-dimensional and multiphoton quantum source[J]. Science, 368, 1487-1490(2020).

    [20] Martin A, Guerreiro T, Tiranov A et al. Quantifying photonic high-dimensional entanglement[J]. Physical Review Letters, 118, 110501(2017).

    [21] Xie Z D, Zhong T, Shrestha S et al. Harnessing high-dimensional hyperentanglement through a biphoton frequency comb[J]. Nature Photonics, 9, 536-542(2015).

    [22] Reimer C, Kues M, Roztocki P et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs[J]. Science, 351, 1176-1180(2016).

    [23] Kues M, Reimer C, Roztocki P et al. On-chip generation of high-dimensional entangled quantum states and their coherent control[J]. Nature, 546, 622-626(2017).

    [24] Allen L, Beijersbergen M W. Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185-8189(1992).

    [25] Padgett M J. Orbital angular momentum 25 years on[J]. Optics Express, 25, 11265-11274(2017).

    [26] Shen Y J, Wang X J, Xie Z W et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light: Science & Applications, 8, 90(2019).

    [27] Erhard M, Fickler R, Krenn M et al. Twisted photons: new quantum perspectives in high dimensions[J]. Light: Science & Applications, 7, 17146(2018).

    [28] Erhard M, Krenn M, Zeilinger A. Advances in high-dimensional quantum entanglement[J]. Nature Reviews Physics, 2, 365-381(2020).

    [29] Fickler R, Lapkiewicz R, Plick W N et al. Quantum entanglement of high angular momenta[J]. Science, 338, 640-643(2012).

    [30] Fickler R, Campbell G, Buchler B et al. Quantum entanglement of angular momentum states with quantum numbers up to 10, 010[J]. Proceedings of the National Academy of Sciences of the United States of America, 113, 13642-13647(2016).

    [31] Krenn M, Huber M, Fickler R et al. Generation and confirmation of a (100 × 100)-dimensional entangled quantum system[J]. Proceedings of the National Academy of Sciences of the United States of America, 111, 6243-6247(2014).

    [32] Kotlyar V V, Almazov A A, Khonina S N et al. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate[J]. Journal of the Optical Society of America A, 22, 849-861(2005).

    [33] Curtis J E, Grier D G. Structure of optical vortices[J]. Physical Review Letters, 90, 133901(2003).

    [34] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 96, 163905(2006).

    [35] Leach J, Padgett M J, Barnett S M et al. Measuring the orbital angular momentum of a single photon[J]. Physical Review Letters, 88, 257901(2002).

    [36] Nagali E, Sansoni L, Sciarrino F et al. Optimal quantum cloning of orbital angular momentum photon qubits through Hong-Ou-Mandel coalescence[J]. Nature Photonics, 3, 720-723(2009).

    [37] Wang X L, Cai X D, Su Z E et al. Quantum teleportation of multiple degrees of freedom of a single photon[J]. Nature, 518, 516-519(2015).

    [38] Slussarenko S. D’Ambrosio V, Piccirillo B, et al. The polarizing Sagnac interferometer: a tool for light orbital angular momentum sorting and spin-orbit photon processing[J]. Optics Express, 18, 27205-27216(2010).

    [39] Zhang W H, Qi Q Q, Zhou J et al. Mimicking faraday rotation to sort the orbital angular momentum of light[J]. Physical Review Letters, 112, 153601(2014).

    [40] Courtial J, Robertson D A, Dholakia K et al. Rotational frequency shift of a light beam[J]. Physical Review Letters, 81, 4828-4830(1998).

    [41] Li S M, Qian S X, Kong L J et al. An efficient and robust scheme for controlling the states of polarization in a Sagnac interferometric configuration[J]. EPL, 105, 64006(2014).

    [42] Wang X L, Luo Y H, Huang H L et al. 18-qubit entanglement with six photons’ three degrees of freedom[J]. Physical Review Letters, 120, 260502(2018).

    [43] Nagali E. Sciarrino F, de Martini F, et al. Quantum information transfer from spin to orbital angular momentum of photons[J]. Physical Review Letters, 103, 013601(2009).

    [44] D’Ambrosio V, Nagali E, Monken C H et al. Deterministic qubit transfer between orbital and spin angular momentum of single photons[J]. Optics Letters, 37, 172-174(2012).

    [45] D’Ambrosio V, Spagnolo N, del Re L et al. Photonic polarization gears for ultra-sensitive angular measurements[J]. Nature Communications, 4, 2432(2013).

    [46] Wang X L, Ding J P, Ni W J et al. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement[J]. Optics Letters, 32, 3549-3551(2007).

    [47] Maurer C, Jesacher A, Fürhapter S et al. Tailoring of arbitrary optical vector beams[J]. New Journal of Physics, 9, 78(2007).

    [48] Jones P H, Rashid M, Makita M et al. Sagnac interferometer method for synthesis of fractional polarization vortices[J]. Optics Letters, 34, 2560-2562(2009).

    [49] Liu S, Qi S X, Zhang Y et al. Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude[J]. Photonics Research, 6, 228-233(2018).

    [50] Gao Y, Chen Z Z, Ding J P et al. Single ultra-high-definition spatial light modulator enabling highly efficient generation of fully structured vector beams[J]. Applied Optics, 58, 6591-6596(2019).

    [51] Wang J, Yang J Y, Fazal I M et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 6, 488-496(2012).

    [52] Zhu L, Wang J. Simultaneous generation of multiple orbital angular momentum (OAM) modes using a single phase-only element[J]. Optics Express, 23, 26221-26233(2015).

    [53] Wan C H, Chen J, Zhan Q W. Tailoring optical orbital angular momentum spectrum with spiral complex field modulation[J]. Optics Express, 25, 15108-15117(2017).

    [54] Kitagawa T, Rudner M S, Berg E et al. Exploring topological phases with quantum walks[J]. Physical Review A, 82, 033429(2010).

    [55] Hasan M Z, Kane C L. Colloquium: topological insulators[J]. Reviews of Modern Physics, 82, 3045-3067(2010).

    [56] Goyal S K, Roux F S, Forbes A et al. Implementing quantum walks using orbital angular momentum of classical light[J]. Physical Review Letters, 110, 263602(2013).

    [57] Cardano F, Massa F, Qassim H et al. Quantum walks and wavepacket dynamics on a lattice with twisted photons[J]. Science Advances, 1, e1500087(2015).

    [58] Wang B, Chen T, Zhang X D. Experimental observation of topologically protected bound states with vanishing Chern numbers in a two-dimensional quantum walk[J]. Physical Review Letters, 121, 100501(2018).

    [59] Yuan L Q, Lin Q, Zhang A W et al. Photonic gauge potential in one cavity with synthetic frequency and orbital angular momentum dimensions[J]. Physical Review Letters, 122, 083903(2019).

    [60] Wehner S, Elkouss D. 362(6412): eaam9288[J]. Hanson R. Quantum internet: a vision for the road ahead. Science(2018).

    [61] Yu Y, Ma F, Luo X Y et al. Entanglement of two quantum memories via fibres over dozens of kilometres[J]. Nature, 578, 240-245(2020).

    [62] Zhou Z Y, Li Y, Ding D S et al. Orbital angular momentum photonic quantum interface[J]. Light: Science & Applications, 5, e16019(2016).

    [63] Zhou Z Y, Liu S L, Li Y et al. Orbital angular momentum-entanglement frequency transducer[J]. Physical Review Letters, 117, 103601(2016).

    [64] Liu S L, Yang C, Xu Z H et al. High-dimensional quantum frequency converter[J]. Physical Review A, 101, 012339(2020).

    [65] Wu H J, Zhao B, Rosales-Guzmán C et al. Spatial-polarization-independent parametric up-conversion of vectorially structured light[J]. Physical Review Applied, 13, 064041(2020).

    [66] Ren Z C, Lou Y C, Cheng Z M et al. Optical frequency conversion of light with maintaining polarization and orbital angular momentum[J]. Optics Letters, 46, 2300-2303(2021).

    [67] Bozinovic N, Yue Y, Ren Y X et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 340, 1545-1548(2013).

    [68] Gregg P, Kristensen P, Ramachandran S. Conservation of orbital angular momentum in air-core optical fibers[J]. Optica, 2, 267-270(2015).

    [69] Mair A, Vaziri A, Weihs G et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 412, 313-316(2001).

    [70] Barreiro J T, Langford N K, Peters N A et al. Generation of hyperentangled photon pairs[J]. Physical Review Letters, 95, 260501(2005).

    [71] Yang T, Zhang Q, Zhang J et al. All-versus-nothing violation of local realism by two-photon, four-dimensional entanglement[J]. Physical Review Letters, 95, 240406(2005).

    [72] Cinelli C, Barbieri M, Perris R et al. All-versus-nothing nonlocality test of quantum mechanics by two-photon hyperentanglement[J]. Physical Review Letters, 95, 240405(2005).

    [73] Barbieri M, de Martini F, Mataloni P et al. Enhancing the violation of the Einstein-Podolsky-Rosen local realism by quantum hyperentanglement[J]. Physical Review Letters, 97, 140407(2006).

    [74] Chen K, Li C M, Zhang Q et al. Experimental realization of one-way quantum computing with two-photon four-qubit cluster states[J]. Physical Review Letters, 99, 120503(2007).

    [75] Schuck C, Huber G, Kurtsiefer C et al. Complete deterministic linear optics Bell state analysis[J]. Physical Review Letters, 96, 190501(2006).

    [76] Barreiro J T, Wei T C, Kwiat P G. Beating the channel capacity limit for linear photonic superdense coding[J]. Nature Physics, 4, 282-286(2008).

    [77] Williams B P, Sadlier R J, Humble T S. Superdense coding over optical fiber links with complete bell-state measurements[J]. Physical Review Letters, 118, 050501(2017).

    [78] Bennett C H, Wiesner S J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states[J]. Physical Review Letters, 69, 2881-2884(1992).

    [79] Bennett C H, Brassard G, Crépeau C et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Physical Review Letters, 70, 1895-1899(1993).

    [80] Wei T C, Barreiro J T, Kwiat P G. Hyperentangled Bell-state analysis[J]. Physical Review A, 75, 060305(2007).

    [81] Hu X M, Guo Y, Liu B H et al. 4(7): eaat9304(2018).

    [82] Kong L J, Liu R, Qi W R et al. 5(6): eaat9206(2019).

    [83] di Lorenzo Pires H, Florijn H C B, van Exter M P. Measurement of the spiral spectrum of entangled two-photon states[J]. Physical Review Letters, 104, 020505(2010).

    [84] Dada A C, Leach J, Buller G S et al. Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities[J]. Nature Physics, 7, 677-680(2011).

    [85] Torres J P, Alexandrescu A, Torner L. Quantum spiral bandwidth of entangled two-photon states[J]. Physical Review A, 68, 050301(2003).

    [86] Liu S L, Zhou Z Y, Liu S K et al. Coherent manipulation of a three-dimensional maximally entangled state[J]. Physical Review A, 98, 062316(2018).

    [87] Wang F R, Erhard M, Babazadeh A et al. Generation of the complete four-dimensional Bell basis[J]. Optica, 4, 1462-1467(2017).

    [88] Chen Y Y, Zhang W H, Zhang D K et al. Coherent generation of the complete high-dimensional bell basis by adaptive pump modulation[J]. Physical Review Applied, 14, 054069(2020).

    [89] Liu S L, Zhang Y W, Yang C et al. Increasing two-photon entangled dimensions by shaping input-beam profiles[J]. Physical Review A, 101, 052324(2020).

    [90] Kovlakov E V, Straupe S S, Kulik S P. Quantum state engineering with twisted photons via adaptive shaping of the pump beam[J]. Physical Review A, 98, 060301(2018).

    [91] Krenn M, Hochrainer A, Lahiri M et al. Entanglement by path identity[J]. Physical Review Letters, 118, 080401(2017).

    [92] Kysela J, Erhard M, Hochrainer A et al. Path identity as a source of high-dimensional entanglement[J]. Proceedings of the National Academy of Sciences of the United States of America, 117, 26118-26122(2020).

    [93] Zhang W H, Qi Q Q, Zhou J et al. Mimicking faraday rotation to sort the orbital angular momentum of light[J]. Physical Review Letters, 112, 153601(2014).

    [94] Berkhout G C G, Lavery M P J, Courtial J et al. Efficient sorting of orbital angular momentum states of light[J]. Physical Review Letters, 105, 153601(2010).

    [95] Mirhosseini M, Malik M, Shi Z M et al. Efficient separation of the orbital angular momentum eigenstates of light[J]. Nature Communications, 4, 2781(2013).

    [96] Wen Y H, Chremmos I, Chen Y J et al. Spiral transformation for high-resolution and efficient sorting of optical vortex modes[J]. Physical Review Letters, 120, 193904(2018).

    [97] Wan C H, Chen J, Zhan Q W. Compact and high-resolution optical orbital angular momentum sorter[J]. APL Photonics, 2, 031302(2017).

    [98] Ruffato G, Massari M, Romanato F. Compact sorting of optical vortices by means of diffractive transformation optics[J]. Optics Letters, 42, 551-554(2017).

    [99] Wen Y H, Chremmos I, Chen Y J et al. Compact and high-performance vortex mode sorter for multi-dimensional multiplexed fiber communication systems[J]. Optica, 7, 254-262(2020).

    [100] Fickler R, Lapkiewicz R, Huber M et al. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information[J]. Nature Communications, 5, 4502(2014).

    [101] Howell J C, Bennink R S, Bentley S J et al. Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion[J]. Physical Review Letters, 92, 210403(2004).

    [102] Leach J, Jack B, Romero J et al. Quantum correlations in optical angle-orbital angular momentum variables[J]. Science, 329, 662-665(2010).

    [103] Chen L X, Ma T L, Qiu X D et al. Realization of the Einstein-Podolsky-Rosen paradox using radial position and radial momentum variables[J]. Physical Review Letters, 123, 060403(2019).

    [104] Kulkarni G, Sahu R. Magaña-Loaiza O S, et al. Single-shot measurement of the orbital-angular-momentum spectrum of light[J]. Nature Communications, 8, 1054(2017).

    [105] Kong L J, Liu R, Qi W R et al. Asymptotical locking tomography of high-dimensional entanglement[J]. Chinese Physics Letters, 37, 034204(2020).

    [106] Hiesmayr B C, Löffler W. Observation of four-photon orbital angular momentum entanglement[J]. Physical Review Letters, 116, 073601(2016).

    [107] Malik M, Erhard M, Huber M et al. Multi-photon entanglement in high dimensions[J]. Nature Photonics, 10, 248-252(2016).

    [108] Erhard M, Malik M, Krenn M et al. Experimental Greenberger-Horne-Zeilinger entanglement beyond qubits[J]. Nature Photonics, 12, 759-764(2018).

    [109] Luo Y H, Chen M C, Erhard M et al. Quantum teleportation of physical qubits into logical code spaces[J]. Proceedings of the National Academy of Sciences of the United States of America, 118, e2026250118(2021).

    [110] Vitelli C, Spagnolo N, Aparo L et al. Joining the quantum state of two photons into one[J]. Nature Photonics, 7, 521-526(2013).

    [111] Neergaard-Nielsen J S. Two become one[J]. Nature Photonics, 7, 512-513(2013).

    [112] Zhong H S, Wang H, Deng Y H et al. Quantum computational advantage using photons[J]. Science, 370, 1460-1463(2020).

    [113] Zhong H S, Deng Y H, Qin J et al. Phase-programmable gaussian boson sampling using stimulated squeezed light[J]. Physical Review Letters, 127, 180502(2021).

    [114] Weinfurter H. ukowski M. Four-photon entanglement from down-conversion[J]. Physical Review A, 64, 010102(2001).

    [115] Gao X Q, Krenn M, Kysela J et al. Arbitrary d-dimensional Pauli X gates of a flying qudit[J]. Physical Review A, 99, 023825(2019).

    [116] Babazadeh A, Erhard M, Wang F R et al. High-dimensional single-photon quantum gates: concepts and experiments[J]. Physical Review Letters, 119, 180510(2017).

    [117] Asadian A, Erker P, Huber M et al. Heisenberg-Weyl observables: Bloch vectors in phase space[J]. Physical Review A, 94, 010301(2016).

    [118] Wang Y C, Hu Z X, Sanders B C et al. Qudits and high-dimensional quantum computing[J]. Frontiers in Physics, 8, 589504(2020).

    [119] Gao X Q, Erhard M, Zeilinger A et al. Computer-inspired concept for high-dimensional multipartite quantum gates[J]. Physical Review Letters, 125, 050501(2020).

    Tools

    Get Citation

    Copy Citation Text

    Xilin Wang, Zhifeng Liu, Xiaoqin Gao, Hao Li, Zhicheng Ren, Chao Chen, Bowen Dong, Yuxiang Yang, Zimo Cheng, Huitian Wang. Quantum Entanglement with Photonic Orbital Angular Momentum Based on Spontaneous Parametric Down-Conversion[J]. Acta Optica Sinica, 2022, 42(3): 0327012

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Quantum Optics

    Received: Dec. 27, 2021

    Accepted: Jan. 6, 2022

    Published Online: Jan. 26, 2022

    The Author Email: Wang Xilin (xilinwang@nju.edu.cn), Wang Huitian (htwang@nju.edu.cn)

    DOI:10.3788/AOS202242.0327012

    Topics