International Journal of Extreme Manufacturing, Volume. 7, Issue 4, 42003(2025)
Advanced approaches to decoupled sensory signal monitoring in human interface systems
[1] [1] Khan Y, Ostfeld A E, Lochner C M, Pierre A and Arias A C. 2016. Monitoring of vital signs with flexible and wearable medical devices.Adv. Mater.28, 4373–4395.
[2] [2] Li G Z, Liu S Q, Wang L Q and Zhu R. 2020. Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition.Sci. Robot.5, eabc8134.
[3] [3] Mishra S et al. 2020. Soft, Wireless periocular wearable electronics for real-time detection of eye vergence in a virtual reality toward mobile eye therapies.Sci. Adv.6, eaay1729.
[4] [4] Chossat J B, Tao Y W, Duchaine V and Park Y L. 2015. Wearable soft artificial skin for hand motion detection with embedded microfluidic strain sensing.In 2015 IEEE International Conference on Robotics and Automation (ICRA)(IEEE, Seattle, WA, USA) pp 2568–2573.
[5] [5] Qin J, Yin L-J, Hao Y-N, Zhong S-L, Zhang D-L, Bi K, Zhang Y-X, Zhao Y and Dang Z-M. 2021. Flexible and stretchable capacitive sensors with different microstructures.Adv. Mater.33, 2008267.
[6] [6] Holzinger M, Le Goff A and Cosnier S. 2014. Nanomaterials for biosensing applications: a review.Front. Chem.2, 63.
[7] [7] Gao Y J et al. 2017. Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring.Adv. Mater.29, 1701985.
[8] [8] Yapici M K, Alkhidir T, Samad Y A and Liao K. 2015. Graphene-clad textile electrodes for electrocardiogram monitoring.Sens. ActuatorsB221, 1469–1474.
[9] [9] Boland C S et al. 2016. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites.Science354, 1257–1260.
[10] [10] Yang Z, Pang Y, Han X-L, Yang Y F, Ling J, Jian M Q, Zhang Y Y, Yang Y and Ren T-L. 2018. Graphene textile strain sensor with negative resistance variation for human motion detection.ACS Nano12, 9134–9141.
[11] [11] Lee J et al. 2018. Highly sensitive multifilament fiber strain sensors with ultrabroad sensing range for textile electronics.ACS Nano12, 4259–4268.
[12] [12] Cao Y L, Guo Y B, Chen Z X, Yang W F, Li K R, He X Y and Li J M. 2022. Highly sensitive self-powered pressure and strain sensor based on crumpled mxene film for wireless human motion detection.Nano Energy92, 106689.
[13] [13] Yan C Y, Wang J X and Lee P S. 2015. Stretchable graphene thermistor with tunable thermal index.ACS Nano9, 2130–2137.
[14] [14] Kim J et al. 2015. Miniaturized flexible electronic systems with wireless power and near-field communication capabilities.Adv. Funct. Mater.25, 4761–4767.
[15] [15] Min S et al. 2023. Clinical validation of a wearable piezoelectric blood-pressure sensor for continuous health monitoring.Adv. Mater.35, 2301627.
[16] [16] Li J et al. 2023. Thin, soft, wearable system for continuous wireless monitoring of artery blood pressure.Nat. Commun.14, 5009.
[17] [17] Lee S P et al. 2018. Highly flexible, wearable, and disposable cardiac biosensors for remote and ambulatory monitoring.npj Digit. Med.1, 2.
[18] [18] Guo H X et al. 2022. Wireless implantable optical probe for continuous monitoring of oxygen saturation in flaps and organ grafts.Nat. Commun.13, 3009.
[19] [19] Yang P, Shi Y X, Li S Y, Tao X L, Liu Z Q, Wang X L, Wang Z L and Chen X Y. 2022. Monitoring the degree of comfort of shoes in-motion using triboelectric pressure sensors with an ultrawide detection range.ACS Nano16, 4654–4665.
[20] [20] Park B, Shin J H, Ok J, Park S, Jung W, Jeong C, Choy S, Jo Y J and Kim T-I. 2022. Cuticular pad-inspired selective frequency damper for nearly dynamic noise-free bioelectronics.Science376, 624–629.
[21] [21] Jeong H et al. 2021. Differential cardiopulmonary monitoring system for artifact-canceled physiological tracking of athletes, workers, and COVID-19 patients.Sci. Adv.7, eabg3092.
[22] [22] O’Neill S J K, Gong H, Matsuhisa N, Chen S, Moon H, Wu H-C, Chen X, Chen X and Bao Z. 2020. A carbon flower based flexible pressure sensor made from large-area coating.Adv. Mater. Interfaces7, 2000875.
[23] [23] Yao H-B, Ge J, Wang C-F, Wang X, Hu W, Zheng Z-J, Ni Y and Yu S-H. 2013. A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design.Adv. Mater.25, 6692–6698.
[24] [24] Kim S, Amjadi M, Lee T-I, Jeong Y, Kwon D, Kim M S, Kim K, Kim T-S, Oh Y S and Park I. 2019. Wearable, ultrawide-range, and bending-insensitive pressure sensor based on carbon nanotube network-coated porous elastomer sponges for human interface and healthcare devices.ACS Appl. Mater. Interfaces11, 23639–23648.
[25] [25] Oh J, Yang J C, Kim J-O, Park H, Kwon S Y, Lee S, Sim J Y, Oh H W, Kim J and Park S. 2018. Pressure insensitive strain sensor with facile solution-based process for tactile sensing applications.ACS Nano12, 7546–7553.
[26] [26] Veeramuthu L, Cho C-J, Liang F-C, Venkatesan M, Kumar G R, Hsu H-Y, Chung R-J, Lee C-H, Lee W-Y and Kuo C-C. 2022. Human skin-inspired electrospun patterned robust strain-insensitive pressure sensors and wearable flexible light-emitting diodes.ACS Appl. Mater. Interfaces14, 30160–30173.
[27] [27] Lee S et al. 2016. A transparent bending-insensitive pressure sensor.Nat. Nanotechnol.11, 472–478.
[28] [28] Yu S H, Li J J, Zhao L, Wang B and Zheng H R. 2022. Stretch-insensitive capacitive pressure sensor based on highly stretchable CuNWs electrode.Sens. ActuatorsA346, 113868.
[29] [29] Luo N Q, Huang Y, Liu J, Chen S-C, Wong C P and Zhao N. 2017. Hollow-structured graphene-silicone-composite-based piezoresistive sensors: decoupled property tuning and bending reliability.Adv. Mater.29, 1702675.
[30] [30] Roh E, Lee H-B, Kim D-I and Lee N-E. 2017. A solution-processable, omnidirectionally stretchable, and high-pressure-sensitive piezoresistive device.Adv. Mater.29, 1703004.
[31] [31] Shi L, Li Z, Chen M, Qin Y J, Jiang Y Z and Wu L M. 2020. Quantum effect-based flexible and transparent pressure sensors with ultrahigh sensitivity and sensing density.Nat. Commun.11, 3529.
[32] [32] He J, Zhou R H, Zhang Y F, Gao W C, Chen T, Mai W and Pan C F. 2022. Strain-insensitive self-powered tactile sensor arrays based on intrinsically stretchable and patternable ultrathin conformal wrinkled graphene-elastomer composite.Adv. Funct. Mater.32, 2107181.
[33] [33] Michel T R, Capasso M J, Cavusoglu M E, Decker J, Zeppilli D, Zhu C, Bakrania S, Kadlowec J A and Xue W. 2020. Evaluation of porous polydimethylsiloxane/carbon nanotubes (PDMS/CNTs) nanocomposites as piezoresistive sensor materials.Microsyst. Technol.26, 1101–1112.
[34] [34] Zhao S F et al. 2017. Binary synergistic sensitivity strengthening of bioinspired hierarchical architectures based on fragmentized reduced graphene oxide sponge and silver nanoparticles for strain sensors and beyond.Small13, 1700944.
[35] [35] Wang X Z, Zhao X X, Yu Y F, Zhai W, Yue X Y, Dai K, Liu C T and Shen C Y. 2024. Design of flexible microporous fiber with double conductive network synergy for high-performance strain sensor.Chem. Eng. J.495, 153641.
[36] [36] Sun J-Y, Lu N S, Yoon J, Oh K-H, Suo Z G and Vlassak J J. 2009. Inorganic islands on a highly stretchable polyimide substrate.J. Mater. Res.24, 3338–3342.
[37] [37] Park H, Jeong Y R, Yun J Y O N, Hong S Y, Jin S W O, Lee S-J, Zi G and Ha J S. 2015. Stretchable array of highly sensitive pressure sensors consisting of polyaniline nanofibers and Au-coated polydimethylsiloxane micropillars.ACS Nano9, 9974–9985.
[38] [38] Su Q et al. 2021. A stretchable and strain-unperturbed pressure sensor for motion interference-free tactile monitoring on skins.Sci. Adv.7, eabi4563.
[39] [39] Choi S B, Noh T, Jung S-B and Kim J-W. 2024. Stretchable piezoresistive pressure sensor array with sophisticated sensitivity, strain-insensitivity, and reproducibility.Adv. Sci.11, 2405374.
[40] [40] Okutani C, Yokota T, Miyazako H and Someya T. 2022. 3D printed spring-type electronics with liquid metals for highly stretchable conductors and inductive strain/pressure sensors.Adv. Mater. Technol.7, 2101657.
[41] [41] Wang Z H, Zhang L, Liu J and Li C Z. 2019. Highly stretchable, sensitive, and transparent strain sensors with a controllable in-plane mesh structure.ACS Appl. Mater. Interfaces11, 5316–5324.
[42] [42] Zhou W X et al. 2019. Metal mesh as a transparent omnidirectional strain sensor.Adv. Mater. Technol.4, 1800698.
[43] [43] Kim D B et al. 2022. Weave-pattern-dependent fabric piezoelectric pressure sensors based on polyvinylidene fluoride nanofibers electrospun with 50 nozzles.npj Flex. Electron.6, 69.
[44] [44] Yan Z C et al. 2019. Stretchable micromotion sensor with enhanced sensitivity using serpentine layout.ACS Appl. Mater. Interfaces11, 12261–12271.
[45] [45] Xie Z Q, Avila R, Huang Y G and Rogers J A. 2020. Flexible and stretchable antennas for biointegrated electronics.Adv. Mater.32, 1902767.
[46] [46] Blees M K et al. 2015. Graphene kirigami.Nature524, 204–207.
[47] [47] Kang C, Kim S-W, Kim W, Choi D and Kim H-K. 2023. Stretchable and flexible snake skin patterned electrodes for wearable electronics inspired by kirigami structure.Adv. Mater. Interfaces10, 2202477.
[48] [48] Li K, Shuai Y M, Cheng X, Luan H W, Liu S Y, Yang C, Xue Z G, Huang Y G and Zhang Y H. 2022. Island effect in stretchable inorganic electronics.Small18, 2107879.
[49] [49] Kim W et al. 2023. Flexible and stretchable piezoresistive sensor with decoupled pressure sensing capability.Adv. Mater. Technol.8, 2300068.
[50] [50] Shang S Y, Yue Y J and Wang X E. 2016. Piezoresistive strain sensing of carbon black/silicone composites above percolation threshold.Rev. Sci. Instrum.87, 123910.
[51] [51] Yang J C, Kim J-O, Oh J, Kwon S Y, Sim J Y, Kim D W, Choi H B and Park S. 2019. Microstructured porous pyramid-based ultrahigh sensitive pressure sensor insensitive to strain and temperature.ACS Appl. Mater. Interfaces11, 19472–19480.
[52] [52] Chang T-H, Tian Y, Li C S, Gu X Y, Li K R, Yang H T, Sanghani P, Lim C M, Ren H L and Chen P-Y. 2019. Stretchable graphene pressure sensors with shar-pei-like hierarchical wrinkles for collision-aware surgical robotics.ACS Appl. Mater. Interfaces11, 10226–10236.
[53] [53] Ding X C, Zhong W B, Jiang H Q, Li M F, Chen Y L, Lu Y, Ma J, Yadav A, Yang L Y and Wang D. 2020. Highly accurate wearable piezoresistive sensors without tension disturbance based on weaved conductive yarn.ACS Appl. Mater. Interfaces12, 35638–35646.
[54] [54] Guo Y, Li Y-H, Guo Z Q, Kim K, Chang F-K and Wang S X. 2016. Bio-inspired stretchable absolute pressure sensor network.Sensors16, 55.
[55] [55] Su Y W et al. 2017. In-plane deformation mechanics for highly stretchable electronics.Adv. Mater.29, 1604989.
[56] [56] Yoo S et al. 2023. Responsive materials and mechanisms as thermal safety systems for skin-interfaced electronic devices.Nat. Commun.14, 1024.
[57] [57] Park M et al. 2023. Skin-integrated systems for power efficient, programmable thermal sensations across large body areas.Proc. Natl Acad. Sci. USA120, e2217828120.
[58] [58] Yoo J-Y et al. 2023. Wireless broadband acousto-mechanical sensing system for continuous physiological monitoring.Nat. Med.29, 3137–3148.
[59] [59] Su J T et al. 2024. Skin-inspired multi-modal mechanoreceptors for dynamic haptic exploration.Adv. Mater.36, 2311549.
[60] [60] Wakabayashi S, Yamaguchi T, Arie T, Akita S and Takei K. 2020. Out-of-plane electric whiskers based on nanocarbon strain sensors for multi-directional detection.Carbon158, 698–703.
[61] [61] Yeo J C, Liu Z J, Zhang Z-Q, Zhang P, Wang Z P and Lim C T. 2017. Wearable mechanotransduced tactile sensor for haptic perception.Adv. Mater. Technol.2, 1700006.
[62] [62] Sun X G et al. 2019. Flexible tactile electronic skin sensor with 3D force detection based on porous CNTs/PDMS nanocomposites.Nanomicro Lett.11, 57.
[63] [63] Boutry C M, Negre M, Jorda M, Vardoulis O, Chortos A, Khatib O and Bao Z N. 2018. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics.Sci. Robot.3, eaau6914.
[64] [64] Mannsfeld S C B, Tee B C-K, Stoltenberg R M, Chen C VH-H, Barman S, Muir B V O, Sokolov A N, Reese C and Bao Z N. 2010. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers.Nat. Mater.9, 859–864.
[65] [65] Won S M et al. 2019. Multimodal sensing with a three-dimensional piezoresistive structure.ACS Nano13, 10972–10979.
[66] [66] Peng S H, Wu S Y, Yu Y Y, Xia B, Lovell N H and Wang C H. 2020. Multimodal capacitive and piezoresistive sensor for simultaneous measurement of multiple forces.ACS Appl. Mater. Interfaces12, 22179–22190.
[67] [67] You I et al. 2020. Artificial multimodal receptors based on ion relaxation dynamics.Science370, 961–965.
[68] [68] Jung M, Lee J, Vishwanath S K, Kwon O-S, Ahn C W, Shin K and Jeon S. 2020. Flexible multimodal sensor inspired by human skin based on hair-type flow, temperature, and pressure.Flex. Print. Electron.5, 025003.
[69] [69] Murphy W L, Dennis R G, Kileny J L and Mooney D J. 2002. Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds.Tissue Eng.8, 43–52.
[70] [70] Zhou L S, Jung S, Brandon E and Jackson T N. 2006. Flexible substrate micro-crystalline silicon and gated amorphous silicon strain sensors.IEEE Trans. Electron Devices53, 380–385.
[71] [71] Yuan X B, Won S M, Han M D, Wang Y S, Rogers J A, Huang Y G and Wang H L. 2021. Mechanics of encapsulated three-dimensional structures for simultaneous sensing of pressure and shear stress.J. Mech. Phys. Solids151, 104400.
[72] [72] Zhang C C et al. 2024. Flexible multimodal sensing system based on a vertical stacking strategy for efficiently decoupling multiple signals.Nano Lett.24, 3186–3195.
[73] [73] Park S et al. 2014. Stretchable energy-harvesting tactile electronic skin capable of differentiating multiple mechanical stimuli modes.Adv. Mater.26, 7324–7332.
[74] [74] Chen H et al. 2020. Human skin-inspired integrated multidimensional sensors based on highly anisotropic structures.Mater. Horiz.7, 2378–2389.
[75] [75] Zhang S P, Chhetry A, Zahed M A, Sharma S, Park C, Yoon S and Park J Y. 2022. On-skin ultrathin and stretchable multifunctional sensor for smart healthcare wearables.npj Flex. Electron.6, 11.
[76] [76] Won S M, Kim H-S, Lu N S, Kim D-G, Del Solar C, Duenas T, Ameen A and Rogers J A. 2011. Piezoresistive strain sensors and multiplexed arrays using assemblies of single-crystalline silicon nanoribbons on plastic substrates.IEEE Trans. Electron Devices58, 4074–4078.
[77] [77] Zhu C X et al. 2018. Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors.Nat. Electron.1, 183–190.
[78] [78] Pandia K, Inan O T, Kovacs G T A and Giovangrandi L. 2012. Extracting respiratory information from seismocardiogram signals acquired on the chest using a miniature accelerometer.Physiol. Meas.33, 1643–1660.
[79] [79] Lin D J, Kimball J P, Zia J, Ganti V G and Inan O T. 2022. Reducing the impact of external vibrations on fiducial point detection in seismocardiogram signals.IEEE Trans. Biomed. Eng.69, 176–185.
[80] [80] Ouyang W et al. 2024. An implantable device for wireless monitoring of diverse physio-behavioral characteristics in freely behaving small animals and interacting groups.Neuron112, 1764–1777.e5.
[81] [81] Ni X Y et al. 2021. Automated, multiparametric monitoring of respiratory biomarkers and vital signs in clinical and home settings for COVID-19 patients.Proc. Natl Acad. Sci. USA118, e2026610118.
[82] [82] Tzavelis A et al. 2024. Development of a miniaturized mechanoacoustic sensor for continuous, objective cough detection, characterization and physiologic monitoring in children with cystic fibrosis.IEEE J. Biomed. Health Inform.28, 5941–5952.
[83] [83] Chun K S et al. 2021. A skin-conformable wireless sensor to objectively quantify symptoms of pruritus.Sci. Adv.7, eabf9405.
[84] [84] Jeong H et al. 2023. Closed-loop network of skin-interfaced wireless devices for quantifying vocal fatigue and providing user feedback.Proc. Natl Acad. Sci. USA120, e2219394120.
[85] [85] Naranjo-Torres J, Mora M, Hernndez-Garca R, Barrientos R J, Fredes C and Valenzuela A. 2020. A review of convolutional neural network applied to fruit image processing.Appl. Sci.10, 3443.
[86] [86] Zhang Z X, Geiger J, Pohjalainen J, El-Desoky Mousa A, Jin W Y and Schuller B. 2018. Deep learning for environmentally robust speech recognition: an overview of recent developments.ACM Trans. Intell. Syst. Technol.9, 49.
[87] [87] Moin A et al. 2021. A wearable biosensing system with insensor adaptive machine learning for hand gesture recognition.Nat. Electron.4, 54–63.
[88] [88] Bakator M and Radosav D. 2018. Deep learning and medical diagnosis: a review of literature.Multimodal Technol. Interact.2, 47.
[89] [89] Grigorescu S, Trasnea B, Cocias T and Macesanu G. 2020. A survey of deep learning techniques for autonomous driving.J. Field Robot.37, 362–386.
[90] [90] Wang D R et al. 2023. Iontronic capacitance-enhanced flexible three-dimensional force sensor with ultrahigh sensitivity for machine-sensing interface.IEEE Electron Device Lett.44, 2023–2026.
[91] [91] Hu X, Chu L Y, Pei J, Liu W Q and Bian J. 2021. Model complexity of deep learning: a survey.Knowl. Inf. Syst.63, 2585–2619.
[92] [92] Bang J, Baek K, Lim J, Han Y H and So H. 2023. Deep neural network regression-assisted pressure sensor for decoupling thermal variations at different operating temperatures.Adv. Intell. Syst.5, 2300186.
[93] [93] So C et al. 2022. Epidermal piezoresistive structure with deep learning-assisted data translation.Npj Flex. Electron.6, 70.
[94] [94] Kim J et al. 2014. Stretchable silicon nanoribbon electronics for skin prosthesis.Nat. Commun.5, 5747.
[95] [95] Li Z M, Huang J Y, Zhou R H, Chen Z Y, Gao W C, He J, Bao R R and Pan C F. 2023. Temperature decoupling of a hydrogel-based strain sensor under a dynamic temperature field.Adv. Mater. Technol.8, 2300404.
[96] [96] Huang G, Liu Z, Van Der Maaten L and Weinberger K Q Densely connected convolutional networks.In Proceedings 2017 IEEE Conference on Computer Vision and Pattern Recognition(IEEE, Honolulu, HI, USA) pp 4700–4708.
[97] [97] Koonce B. 2021. EfficientNet.Convolutional Neural Networks with Swift for Tensorflow: Image Recognition and Dataset Categorization(ed Koonce B) (Apress, Berkeley) pp 109–123.
[98] [98] Ma X, Shi H F, Miao X Y, Li Q Y, Wang X F, Ding L B, Zhang H and Dai K R. 2023. Multiple dynamic impact signal identification method based on lightweight neural network with acceleration sensor.IEEE Sens. J.23, 17289–17300.
[99] [99] Ma X, Zhang S R, Tang T, Yu D, Wang X F, Zhang H, Ding L B and Dai K R. 2024. A lightweight high-impact acceleration state reconstruction method for multibody dynamic systems by an extended kalman filter- aided time neural network.IEEE Sens. J.24, 31524–31537.
[100] [100] Roh Y et al. 2021. Vital signal sensing and manipulation of a microscale organ with a multifunctional soft gripper.Sci. Robot.6, eabi6774.
[101] [101] Lee G, Son J H, Lee S, Kim S W, Kim D, Nguyen N N, Lee S G and Cho K. 2021. Fingerpad-inspired multimodal electronic skin for material discrimination and texture recognition.Adv. Sci.8, 2002606.
[102] [102] Liu M W et al. 2022. A star-nose-like tactile-olfactory bionic sensing array for robust object recognition in non-visual environments.Nat. Commun.13, 79.
[103] [103] Dai X Y, Wu Y H, Liang Q H, Yang J K, Huang L-B, Kong J and Hao J H. 2023. Soft robotic-adapted multimodal sensors derived from entirely intrinsic self-healing and stretchable cross-linked networks.Adv. Funct. Mater.33, 2304415.
[104] [104] Hua Q L, Sun J L, Liu H T, Bao R R, Yu R M, Zhai J Y, Pan C F and Wang Z L. 2018. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing.Nat. Commun.9, 244.
[105] [105] Liu Z et al. 2024. A three-dimensionally architected electronic skin mimicking human mechanosensation.Science384, 987–994.
[106] [106] Xiao H Y et al. 2023. Dual mode strain–temperature sensor with high stimuli discriminability and resolution for smart wearables.Adv. Funct. Mater.33, 2214907.
[107] [107] Han M D et al. 2020. Catheter-integrated soft multilayer electronic arrays for multiplexed sensing and actuation during cardiac surgery.Nat. Biomed. Eng.4, 997–1009.
[108] [108] Cho S et al. 2023. Wireless, multimodal sensors for continuous measurement of pressure, temperature, and hydration of patients in wheelchair.npj Flex. Electron.7, 8.
[109] [109] Kim D-H et al. 2011. Epidermal electronics.Science333, 838–843.
[110] [110] Boutry C M, Kaizawa Y, Schroeder B C, Chortos A, Legrand A, Wang Z, Chang J, Fox P and Bao Z N. 2018. A stretchable and biodegradable strain and pressure sensor for orthopaedic application.Nat. Electron.1, 314–321.
[111] [111] Kwon K et al. 2023. A battery-less wireless implant for the continuous monitoring of vascular pressure, flow rate and temperature.Nat. Biomed. Eng.7, 1215–1228.
[112] [112] Boutry C M et al. 2019. Biodegradable and flexible arterialpulse sensor for the wireless monitoring of blood flow.Nat. Biomed. Eng.3, 47–57.
[113] [113] Kwak J W et al. 2020. Wireless sensors for continuous, multimodal measurements at the skin interface with lower limb prostheses.Sci. Transl. Med.12, eabc4327.
[114] [114] Yang Q Q, Ye Z Q, Wu R K, Lv H H, Li C, Xu K C and Yang G. 2023. A highly sensitive iontronic bimodal sensor with pressure-temperature discriminability for robot skin.Adv. Mater. Technol.8, 2300561.
[115] [115] Oh Y S et al. 2021. Battery-free, wireless soft sensors for continuous multi-site measurements of pressure and temperature from patients at risk for pressure injuries.Nat. Commun.12, 5008.
[116] [116] Park Y et al. 2024. Soft, full wheatstone bridge 3D pressure sensors for cardiovascular monitoring.npj Flex. Electron.8, 6.
[117] [117] Liu X C, Zhu Y H, Nomani M W, Wen X J, Hsia T-Y and Koley G. 2013. A highly sensitive pressure sensor using a Au-patterned polydimethylsiloxane membrane for biosensing applications.J. Micromech. Microeng.23, 025022.
[118] [118] Schubert P J and Nevin J H. 1985. A polyimide-based capacitive humidity sensor.IEEE Trans. Electron Devices32, 1220–1223.
[119] [119] Yamamoto Y, Yamamoto D, Takada M, Naito H, Arie T, Akita S and Takei K. 2017. Efficient skin temperature sensor and stable gel-less sticky ECG sensor for a wearable flexible healthcare patch.Adv. Healthcare Mater.6, 1700495.
[120] [120] Schwartz G, Tee B C K, Mei J G, Appleton A L, Kim D H, Wang H L and Bao Z N. 2013. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring.Nat. Commun.4, 1859.
[121] [121] Kim J et al. 2017. Miniaturized battery-free wireless systems for wearable pulse oximetry.Adv. Funct. Mater.27, 1604373.
[122] [122] Koydemir H C and Ozcan A. 2018. Wearable and implantable sensors for biomedical applications.Annu. Rev. Anal. Chem.11, 127–146.
[123] [123] Ouyang W et al. 2023. A wireless and battery-less implant for multimodal closed-loop neuromodulation in small animals.Nat. Biomed. Eng.7, 1252–1269.
Get Citation
Copy Citation Text
Lee Se Gi, Yu Ki Jun, Won Sang Min, Yoo Jae-Young. Advanced approaches to decoupled sensory signal monitoring in human interface systems[J]. International Journal of Extreme Manufacturing, 2025, 7(4): 42003
Category: Topical Review
Received: Oct. 1, 2024
Accepted: Sep. 9, 2025
Published Online: Sep. 9, 2025
The Author Email: