International Journal of Extreme Manufacturing, Volume. 7, Issue 4, 42003(2025)

Advanced approaches to decoupled sensory signal monitoring in human interface systems

Lee Se Gi, Yu Ki Jun, Won Sang Min, and Yoo Jae-Young
References(123)

[1] [1] Khan Y, Ostfeld A E, Lochner C M, Pierre A and Arias A C. 2016. Monitoring of vital signs with flexible and wearable medical devices.Adv. Mater.28, 4373–4395.

[2] [2] Li G Z, Liu S Q, Wang L Q and Zhu R. 2020. Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition.Sci. Robot.5, eabc8134.

[3] [3] Mishra S et al. 2020. Soft, Wireless periocular wearable electronics for real-time detection of eye vergence in a virtual reality toward mobile eye therapies.Sci. Adv.6, eaay1729.

[4] [4] Chossat J B, Tao Y W, Duchaine V and Park Y L. 2015. Wearable soft artificial skin for hand motion detection with embedded microfluidic strain sensing.In 2015 IEEE International Conference on Robotics and Automation (ICRA)(IEEE, Seattle, WA, USA) pp 2568–2573.

[5] [5] Qin J, Yin L-J, Hao Y-N, Zhong S-L, Zhang D-L, Bi K, Zhang Y-X, Zhao Y and Dang Z-M. 2021. Flexible and stretchable capacitive sensors with different microstructures.Adv. Mater.33, 2008267.

[6] [6] Holzinger M, Le Goff A and Cosnier S. 2014. Nanomaterials for biosensing applications: a review.Front. Chem.2, 63.

[7] [7] Gao Y J et al. 2017. Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring.Adv. Mater.29, 1701985.

[8] [8] Yapici M K, Alkhidir T, Samad Y A and Liao K. 2015. Graphene-clad textile electrodes for electrocardiogram monitoring.Sens. ActuatorsB221, 1469–1474.

[9] [9] Boland C S et al. 2016. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites.Science354, 1257–1260.

[10] [10] Yang Z, Pang Y, Han X-L, Yang Y F, Ling J, Jian M Q, Zhang Y Y, Yang Y and Ren T-L. 2018. Graphene textile strain sensor with negative resistance variation for human motion detection.ACS Nano12, 9134–9141.

[11] [11] Lee J et al. 2018. Highly sensitive multifilament fiber strain sensors with ultrabroad sensing range for textile electronics.ACS Nano12, 4259–4268.

[12] [12] Cao Y L, Guo Y B, Chen Z X, Yang W F, Li K R, He X Y and Li J M. 2022. Highly sensitive self-powered pressure and strain sensor based on crumpled mxene film for wireless human motion detection.Nano Energy92, 106689.

[13] [13] Yan C Y, Wang J X and Lee P S. 2015. Stretchable graphene thermistor with tunable thermal index.ACS Nano9, 2130–2137.

[14] [14] Kim J et al. 2015. Miniaturized flexible electronic systems with wireless power and near-field communication capabilities.Adv. Funct. Mater.25, 4761–4767.

[15] [15] Min S et al. 2023. Clinical validation of a wearable piezoelectric blood-pressure sensor for continuous health monitoring.Adv. Mater.35, 2301627.

[16] [16] Li J et al. 2023. Thin, soft, wearable system for continuous wireless monitoring of artery blood pressure.Nat. Commun.14, 5009.

[17] [17] Lee S P et al. 2018. Highly flexible, wearable, and disposable cardiac biosensors for remote and ambulatory monitoring.npj Digit. Med.1, 2.

[18] [18] Guo H X et al. 2022. Wireless implantable optical probe for continuous monitoring of oxygen saturation in flaps and organ grafts.Nat. Commun.13, 3009.

[19] [19] Yang P, Shi Y X, Li S Y, Tao X L, Liu Z Q, Wang X L, Wang Z L and Chen X Y. 2022. Monitoring the degree of comfort of shoes in-motion using triboelectric pressure sensors with an ultrawide detection range.ACS Nano16, 4654–4665.

[20] [20] Park B, Shin J H, Ok J, Park S, Jung W, Jeong C, Choy S, Jo Y J and Kim T-I. 2022. Cuticular pad-inspired selective frequency damper for nearly dynamic noise-free bioelectronics.Science376, 624–629.

[21] [21] Jeong H et al. 2021. Differential cardiopulmonary monitoring system for artifact-canceled physiological tracking of athletes, workers, and COVID-19 patients.Sci. Adv.7, eabg3092.

[22] [22] O’Neill S J K, Gong H, Matsuhisa N, Chen S, Moon H, Wu H-C, Chen X, Chen X and Bao Z. 2020. A carbon flower based flexible pressure sensor made from large-area coating.Adv. Mater. Interfaces7, 2000875.

[23] [23] Yao H-B, Ge J, Wang C-F, Wang X, Hu W, Zheng Z-J, Ni Y and Yu S-H. 2013. A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design.Adv. Mater.25, 6692–6698.

[24] [24] Kim S, Amjadi M, Lee T-I, Jeong Y, Kwon D, Kim M S, Kim K, Kim T-S, Oh Y S and Park I. 2019. Wearable, ultrawide-range, and bending-insensitive pressure sensor based on carbon nanotube network-coated porous elastomer sponges for human interface and healthcare devices.ACS Appl. Mater. Interfaces11, 23639–23648.

[25] [25] Oh J, Yang J C, Kim J-O, Park H, Kwon S Y, Lee S, Sim J Y, Oh H W, Kim J and Park S. 2018. Pressure insensitive strain sensor with facile solution-based process for tactile sensing applications.ACS Nano12, 7546–7553.

[26] [26] Veeramuthu L, Cho C-J, Liang F-C, Venkatesan M, Kumar G R, Hsu H-Y, Chung R-J, Lee C-H, Lee W-Y and Kuo C-C. 2022. Human skin-inspired electrospun patterned robust strain-insensitive pressure sensors and wearable flexible light-emitting diodes.ACS Appl. Mater. Interfaces14, 30160–30173.

[27] [27] Lee S et al. 2016. A transparent bending-insensitive pressure sensor.Nat. Nanotechnol.11, 472–478.

[28] [28] Yu S H, Li J J, Zhao L, Wang B and Zheng H R. 2022. Stretch-insensitive capacitive pressure sensor based on highly stretchable CuNWs electrode.Sens. ActuatorsA346, 113868.

[29] [29] Luo N Q, Huang Y, Liu J, Chen S-C, Wong C P and Zhao N. 2017. Hollow-structured graphene-silicone-composite-based piezoresistive sensors: decoupled property tuning and bending reliability.Adv. Mater.29, 1702675.

[30] [30] Roh E, Lee H-B, Kim D-I and Lee N-E. 2017. A solution-processable, omnidirectionally stretchable, and high-pressure-sensitive piezoresistive device.Adv. Mater.29, 1703004.

[31] [31] Shi L, Li Z, Chen M, Qin Y J, Jiang Y Z and Wu L M. 2020. Quantum effect-based flexible and transparent pressure sensors with ultrahigh sensitivity and sensing density.Nat. Commun.11, 3529.

[32] [32] He J, Zhou R H, Zhang Y F, Gao W C, Chen T, Mai W and Pan C F. 2022. Strain-insensitive self-powered tactile sensor arrays based on intrinsically stretchable and patternable ultrathin conformal wrinkled graphene-elastomer composite.Adv. Funct. Mater.32, 2107181.

[33] [33] Michel T R, Capasso M J, Cavusoglu M E, Decker J, Zeppilli D, Zhu C, Bakrania S, Kadlowec J A and Xue W. 2020. Evaluation of porous polydimethylsiloxane/carbon nanotubes (PDMS/CNTs) nanocomposites as piezoresistive sensor materials.Microsyst. Technol.26, 1101–1112.

[34] [34] Zhao S F et al. 2017. Binary synergistic sensitivity strengthening of bioinspired hierarchical architectures based on fragmentized reduced graphene oxide sponge and silver nanoparticles for strain sensors and beyond.Small13, 1700944.

[35] [35] Wang X Z, Zhao X X, Yu Y F, Zhai W, Yue X Y, Dai K, Liu C T and Shen C Y. 2024. Design of flexible microporous fiber with double conductive network synergy for high-performance strain sensor.Chem. Eng. J.495, 153641.

[36] [36] Sun J-Y, Lu N S, Yoon J, Oh K-H, Suo Z G and Vlassak J J. 2009. Inorganic islands on a highly stretchable polyimide substrate.J. Mater. Res.24, 3338–3342.

[37] [37] Park H, Jeong Y R, Yun J Y O N, Hong S Y, Jin S W O, Lee S-J, Zi G and Ha J S. 2015. Stretchable array of highly sensitive pressure sensors consisting of polyaniline nanofibers and Au-coated polydimethylsiloxane micropillars.ACS Nano9, 9974–9985.

[38] [38] Su Q et al. 2021. A stretchable and strain-unperturbed pressure sensor for motion interference-free tactile monitoring on skins.Sci. Adv.7, eabi4563.

[39] [39] Choi S B, Noh T, Jung S-B and Kim J-W. 2024. Stretchable piezoresistive pressure sensor array with sophisticated sensitivity, strain-insensitivity, and reproducibility.Adv. Sci.11, 2405374.

[40] [40] Okutani C, Yokota T, Miyazako H and Someya T. 2022. 3D printed spring-type electronics with liquid metals for highly stretchable conductors and inductive strain/pressure sensors.Adv. Mater. Technol.7, 2101657.

[41] [41] Wang Z H, Zhang L, Liu J and Li C Z. 2019. Highly stretchable, sensitive, and transparent strain sensors with a controllable in-plane mesh structure.ACS Appl. Mater. Interfaces11, 5316–5324.

[42] [42] Zhou W X et al. 2019. Metal mesh as a transparent omnidirectional strain sensor.Adv. Mater. Technol.4, 1800698.

[43] [43] Kim D B et al. 2022. Weave-pattern-dependent fabric piezoelectric pressure sensors based on polyvinylidene fluoride nanofibers electrospun with 50 nozzles.npj Flex. Electron.6, 69.

[44] [44] Yan Z C et al. 2019. Stretchable micromotion sensor with enhanced sensitivity using serpentine layout.ACS Appl. Mater. Interfaces11, 12261–12271.

[45] [45] Xie Z Q, Avila R, Huang Y G and Rogers J A. 2020. Flexible and stretchable antennas for biointegrated electronics.Adv. Mater.32, 1902767.

[46] [46] Blees M K et al. 2015. Graphene kirigami.Nature524, 204–207.

[47] [47] Kang C, Kim S-W, Kim W, Choi D and Kim H-K. 2023. Stretchable and flexible snake skin patterned electrodes for wearable electronics inspired by kirigami structure.Adv. Mater. Interfaces10, 2202477.

[48] [48] Li K, Shuai Y M, Cheng X, Luan H W, Liu S Y, Yang C, Xue Z G, Huang Y G and Zhang Y H. 2022. Island effect in stretchable inorganic electronics.Small18, 2107879.

[49] [49] Kim W et al. 2023. Flexible and stretchable piezoresistive sensor with decoupled pressure sensing capability.Adv. Mater. Technol.8, 2300068.

[50] [50] Shang S Y, Yue Y J and Wang X E. 2016. Piezoresistive strain sensing of carbon black/silicone composites above percolation threshold.Rev. Sci. Instrum.87, 123910.

[51] [51] Yang J C, Kim J-O, Oh J, Kwon S Y, Sim J Y, Kim D W, Choi H B and Park S. 2019. Microstructured porous pyramid-based ultrahigh sensitive pressure sensor insensitive to strain and temperature.ACS Appl. Mater. Interfaces11, 19472–19480.

[52] [52] Chang T-H, Tian Y, Li C S, Gu X Y, Li K R, Yang H T, Sanghani P, Lim C M, Ren H L and Chen P-Y. 2019. Stretchable graphene pressure sensors with shar-pei-like hierarchical wrinkles for collision-aware surgical robotics.ACS Appl. Mater. Interfaces11, 10226–10236.

[53] [53] Ding X C, Zhong W B, Jiang H Q, Li M F, Chen Y L, Lu Y, Ma J, Yadav A, Yang L Y and Wang D. 2020. Highly accurate wearable piezoresistive sensors without tension disturbance based on weaved conductive yarn.ACS Appl. Mater. Interfaces12, 35638–35646.

[54] [54] Guo Y, Li Y-H, Guo Z Q, Kim K, Chang F-K and Wang S X. 2016. Bio-inspired stretchable absolute pressure sensor network.Sensors16, 55.

[55] [55] Su Y W et al. 2017. In-plane deformation mechanics for highly stretchable electronics.Adv. Mater.29, 1604989.

[56] [56] Yoo S et al. 2023. Responsive materials and mechanisms as thermal safety systems for skin-interfaced electronic devices.Nat. Commun.14, 1024.

[57] [57] Park M et al. 2023. Skin-integrated systems for power efficient, programmable thermal sensations across large body areas.Proc. Natl Acad. Sci. USA120, e2217828120.

[58] [58] Yoo J-Y et al. 2023. Wireless broadband acousto-mechanical sensing system for continuous physiological monitoring.Nat. Med.29, 3137–3148.

[59] [59] Su J T et al. 2024. Skin-inspired multi-modal mechanoreceptors for dynamic haptic exploration.Adv. Mater.36, 2311549.

[60] [60] Wakabayashi S, Yamaguchi T, Arie T, Akita S and Takei K. 2020. Out-of-plane electric whiskers based on nanocarbon strain sensors for multi-directional detection.Carbon158, 698–703.

[61] [61] Yeo J C, Liu Z J, Zhang Z-Q, Zhang P, Wang Z P and Lim C T. 2017. Wearable mechanotransduced tactile sensor for haptic perception.Adv. Mater. Technol.2, 1700006.

[62] [62] Sun X G et al. 2019. Flexible tactile electronic skin sensor with 3D force detection based on porous CNTs/PDMS nanocomposites.Nanomicro Lett.11, 57.

[63] [63] Boutry C M, Negre M, Jorda M, Vardoulis O, Chortos A, Khatib O and Bao Z N. 2018. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics.Sci. Robot.3, eaau6914.

[64] [64] Mannsfeld S C B, Tee B C-K, Stoltenberg R M, Chen C VH-H, Barman S, Muir B V O, Sokolov A N, Reese C and Bao Z N. 2010. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers.Nat. Mater.9, 859–864.

[65] [65] Won S M et al. 2019. Multimodal sensing with a three-dimensional piezoresistive structure.ACS Nano13, 10972–10979.

[66] [66] Peng S H, Wu S Y, Yu Y Y, Xia B, Lovell N H and Wang C H. 2020. Multimodal capacitive and piezoresistive sensor for simultaneous measurement of multiple forces.ACS Appl. Mater. Interfaces12, 22179–22190.

[67] [67] You I et al. 2020. Artificial multimodal receptors based on ion relaxation dynamics.Science370, 961–965.

[68] [68] Jung M, Lee J, Vishwanath S K, Kwon O-S, Ahn C W, Shin K and Jeon S. 2020. Flexible multimodal sensor inspired by human skin based on hair-type flow, temperature, and pressure.Flex. Print. Electron.5, 025003.

[69] [69] Murphy W L, Dennis R G, Kileny J L and Mooney D J. 2002. Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds.Tissue Eng.8, 43–52.

[70] [70] Zhou L S, Jung S, Brandon E and Jackson T N. 2006. Flexible substrate micro-crystalline silicon and gated amorphous silicon strain sensors.IEEE Trans. Electron Devices53, 380–385.

[71] [71] Yuan X B, Won S M, Han M D, Wang Y S, Rogers J A, Huang Y G and Wang H L. 2021. Mechanics of encapsulated three-dimensional structures for simultaneous sensing of pressure and shear stress.J. Mech. Phys. Solids151, 104400.

[72] [72] Zhang C C et al. 2024. Flexible multimodal sensing system based on a vertical stacking strategy for efficiently decoupling multiple signals.Nano Lett.24, 3186–3195.

[73] [73] Park S et al. 2014. Stretchable energy-harvesting tactile electronic skin capable of differentiating multiple mechanical stimuli modes.Adv. Mater.26, 7324–7332.

[74] [74] Chen H et al. 2020. Human skin-inspired integrated multidimensional sensors based on highly anisotropic structures.Mater. Horiz.7, 2378–2389.

[75] [75] Zhang S P, Chhetry A, Zahed M A, Sharma S, Park C, Yoon S and Park J Y. 2022. On-skin ultrathin and stretchable multifunctional sensor for smart healthcare wearables.npj Flex. Electron.6, 11.

[76] [76] Won S M, Kim H-S, Lu N S, Kim D-G, Del Solar C, Duenas T, Ameen A and Rogers J A. 2011. Piezoresistive strain sensors and multiplexed arrays using assemblies of single-crystalline silicon nanoribbons on plastic substrates.IEEE Trans. Electron Devices58, 4074–4078.

[77] [77] Zhu C X et al. 2018. Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors.Nat. Electron.1, 183–190.

[78] [78] Pandia K, Inan O T, Kovacs G T A and Giovangrandi L. 2012. Extracting respiratory information from seismocardiogram signals acquired on the chest using a miniature accelerometer.Physiol. Meas.33, 1643–1660.

[79] [79] Lin D J, Kimball J P, Zia J, Ganti V G and Inan O T. 2022. Reducing the impact of external vibrations on fiducial point detection in seismocardiogram signals.IEEE Trans. Biomed. Eng.69, 176–185.

[80] [80] Ouyang W et al. 2024. An implantable device for wireless monitoring of diverse physio-behavioral characteristics in freely behaving small animals and interacting groups.Neuron112, 1764–1777.e5.

[81] [81] Ni X Y et al. 2021. Automated, multiparametric monitoring of respiratory biomarkers and vital signs in clinical and home settings for COVID-19 patients.Proc. Natl Acad. Sci. USA118, e2026610118.

[82] [82] Tzavelis A et al. 2024. Development of a miniaturized mechanoacoustic sensor for continuous, objective cough detection, characterization and physiologic monitoring in children with cystic fibrosis.IEEE J. Biomed. Health Inform.28, 5941–5952.

[83] [83] Chun K S et al. 2021. A skin-conformable wireless sensor to objectively quantify symptoms of pruritus.Sci. Adv.7, eabf9405.

[84] [84] Jeong H et al. 2023. Closed-loop network of skin-interfaced wireless devices for quantifying vocal fatigue and providing user feedback.Proc. Natl Acad. Sci. USA120, e2219394120.

[85] [85] Naranjo-Torres J, Mora M, Hernndez-Garca R, Barrientos R J, Fredes C and Valenzuela A. 2020. A review of convolutional neural network applied to fruit image processing.Appl. Sci.10, 3443.

[86] [86] Zhang Z X, Geiger J, Pohjalainen J, El-Desoky Mousa A, Jin W Y and Schuller B. 2018. Deep learning for environmentally robust speech recognition: an overview of recent developments.ACM Trans. Intell. Syst. Technol.9, 49.

[87] [87] Moin A et al. 2021. A wearable biosensing system with insensor adaptive machine learning for hand gesture recognition.Nat. Electron.4, 54–63.

[88] [88] Bakator M and Radosav D. 2018. Deep learning and medical diagnosis: a review of literature.Multimodal Technol. Interact.2, 47.

[89] [89] Grigorescu S, Trasnea B, Cocias T and Macesanu G. 2020. A survey of deep learning techniques for autonomous driving.J. Field Robot.37, 362–386.

[90] [90] Wang D R et al. 2023. Iontronic capacitance-enhanced flexible three-dimensional force sensor with ultrahigh sensitivity for machine-sensing interface.IEEE Electron Device Lett.44, 2023–2026.

[91] [91] Hu X, Chu L Y, Pei J, Liu W Q and Bian J. 2021. Model complexity of deep learning: a survey.Knowl. Inf. Syst.63, 2585–2619.

[92] [92] Bang J, Baek K, Lim J, Han Y H and So H. 2023. Deep neural network regression-assisted pressure sensor for decoupling thermal variations at different operating temperatures.Adv. Intell. Syst.5, 2300186.

[93] [93] So C et al. 2022. Epidermal piezoresistive structure with deep learning-assisted data translation.Npj Flex. Electron.6, 70.

[94] [94] Kim J et al. 2014. Stretchable silicon nanoribbon electronics for skin prosthesis.Nat. Commun.5, 5747.

[95] [95] Li Z M, Huang J Y, Zhou R H, Chen Z Y, Gao W C, He J, Bao R R and Pan C F. 2023. Temperature decoupling of a hydrogel-based strain sensor under a dynamic temperature field.Adv. Mater. Technol.8, 2300404.

[96] [96] Huang G, Liu Z, Van Der Maaten L and Weinberger K Q Densely connected convolutional networks.In Proceedings 2017 IEEE Conference on Computer Vision and Pattern Recognition(IEEE, Honolulu, HI, USA) pp 4700–4708.

[97] [97] Koonce B. 2021. EfficientNet.Convolutional Neural Networks with Swift for Tensorflow: Image Recognition and Dataset Categorization(ed Koonce B) (Apress, Berkeley) pp 109–123.

[98] [98] Ma X, Shi H F, Miao X Y, Li Q Y, Wang X F, Ding L B, Zhang H and Dai K R. 2023. Multiple dynamic impact signal identification method based on lightweight neural network with acceleration sensor.IEEE Sens. J.23, 17289–17300.

[99] [99] Ma X, Zhang S R, Tang T, Yu D, Wang X F, Zhang H, Ding L B and Dai K R. 2024. A lightweight high-impact acceleration state reconstruction method for multibody dynamic systems by an extended kalman filter- aided time neural network.IEEE Sens. J.24, 31524–31537.

[100] [100] Roh Y et al. 2021. Vital signal sensing and manipulation of a microscale organ with a multifunctional soft gripper.Sci. Robot.6, eabi6774.

[101] [101] Lee G, Son J H, Lee S, Kim S W, Kim D, Nguyen N N, Lee S G and Cho K. 2021. Fingerpad-inspired multimodal electronic skin for material discrimination and texture recognition.Adv. Sci.8, 2002606.

[102] [102] Liu M W et al. 2022. A star-nose-like tactile-olfactory bionic sensing array for robust object recognition in non-visual environments.Nat. Commun.13, 79.

[103] [103] Dai X Y, Wu Y H, Liang Q H, Yang J K, Huang L-B, Kong J and Hao J H. 2023. Soft robotic-adapted multimodal sensors derived from entirely intrinsic self-healing and stretchable cross-linked networks.Adv. Funct. Mater.33, 2304415.

[104] [104] Hua Q L, Sun J L, Liu H T, Bao R R, Yu R M, Zhai J Y, Pan C F and Wang Z L. 2018. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing.Nat. Commun.9, 244.

[105] [105] Liu Z et al. 2024. A three-dimensionally architected electronic skin mimicking human mechanosensation.Science384, 987–994.

[106] [106] Xiao H Y et al. 2023. Dual mode strain–temperature sensor with high stimuli discriminability and resolution for smart wearables.Adv. Funct. Mater.33, 2214907.

[107] [107] Han M D et al. 2020. Catheter-integrated soft multilayer electronic arrays for multiplexed sensing and actuation during cardiac surgery.Nat. Biomed. Eng.4, 997–1009.

[108] [108] Cho S et al. 2023. Wireless, multimodal sensors for continuous measurement of pressure, temperature, and hydration of patients in wheelchair.npj Flex. Electron.7, 8.

[109] [109] Kim D-H et al. 2011. Epidermal electronics.Science333, 838–843.

[110] [110] Boutry C M, Kaizawa Y, Schroeder B C, Chortos A, Legrand A, Wang Z, Chang J, Fox P and Bao Z N. 2018. A stretchable and biodegradable strain and pressure sensor for orthopaedic application.Nat. Electron.1, 314–321.

[111] [111] Kwon K et al. 2023. A battery-less wireless implant for the continuous monitoring of vascular pressure, flow rate and temperature.Nat. Biomed. Eng.7, 1215–1228.

[112] [112] Boutry C M et al. 2019. Biodegradable and flexible arterialpulse sensor for the wireless monitoring of blood flow.Nat. Biomed. Eng.3, 47–57.

[113] [113] Kwak J W et al. 2020. Wireless sensors for continuous, multimodal measurements at the skin interface with lower limb prostheses.Sci. Transl. Med.12, eabc4327.

[114] [114] Yang Q Q, Ye Z Q, Wu R K, Lv H H, Li C, Xu K C and Yang G. 2023. A highly sensitive iontronic bimodal sensor with pressure-temperature discriminability for robot skin.Adv. Mater. Technol.8, 2300561.

[115] [115] Oh Y S et al. 2021. Battery-free, wireless soft sensors for continuous multi-site measurements of pressure and temperature from patients at risk for pressure injuries.Nat. Commun.12, 5008.

[116] [116] Park Y et al. 2024. Soft, full wheatstone bridge 3D pressure sensors for cardiovascular monitoring.npj Flex. Electron.8, 6.

[117] [117] Liu X C, Zhu Y H, Nomani M W, Wen X J, Hsia T-Y and Koley G. 2013. A highly sensitive pressure sensor using a Au-patterned polydimethylsiloxane membrane for biosensing applications.J. Micromech. Microeng.23, 025022.

[118] [118] Schubert P J and Nevin J H. 1985. A polyimide-based capacitive humidity sensor.IEEE Trans. Electron Devices32, 1220–1223.

[119] [119] Yamamoto Y, Yamamoto D, Takada M, Naito H, Arie T, Akita S and Takei K. 2017. Efficient skin temperature sensor and stable gel-less sticky ECG sensor for a wearable flexible healthcare patch.Adv. Healthcare Mater.6, 1700495.

[120] [120] Schwartz G, Tee B C K, Mei J G, Appleton A L, Kim D H, Wang H L and Bao Z N. 2013. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring.Nat. Commun.4, 1859.

[121] [121] Kim J et al. 2017. Miniaturized battery-free wireless systems for wearable pulse oximetry.Adv. Funct. Mater.27, 1604373.

[122] [122] Koydemir H C and Ozcan A. 2018. Wearable and implantable sensors for biomedical applications.Annu. Rev. Anal. Chem.11, 127–146.

[123] [123] Ouyang W et al. 2023. A wireless and battery-less implant for multimodal closed-loop neuromodulation in small animals.Nat. Biomed. Eng.7, 1252–1269.

Tools

Get Citation

Copy Citation Text

Lee Se Gi, Yu Ki Jun, Won Sang Min, Yoo Jae-Young. Advanced approaches to decoupled sensory signal monitoring in human interface systems[J]. International Journal of Extreme Manufacturing, 2025, 7(4): 42003

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category: Topical Review

Received: Oct. 1, 2024

Accepted: Sep. 9, 2025

Published Online: Sep. 9, 2025

The Author Email:

DOI:10.1088/2631-7990/adbc4e

Topics