Acta Optica Sinica, Volume. 45, Issue 12, 1200001(2025)

Optical Guidance for AUV Underwater Docking (Invited)

Xuelong Li1,2、*, Zhe Sun1,2、**, and Guojun Wu3、***
Author Affiliations
  • 1School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi’an 710072, Shaanxi , China
  • 2Institute of Artificial Intelligence (TeleAI), China Telecom, Shanghai 200232, China
  • 3Xi’an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences, Xi’an 710119, Shaanxi , China
  • show less
    Figures & Tables(18)
    Schematic diagram of optical guidance for AUV underwater dock
    Optical guidance technologies for AUV underwater dock
    Schematic diagram of geometric structure of PnP algorithm
    Underwater monocular vision guidance test system
    Platform and cage docks. (a) Platform dock; (b) contour extraction of platform dock; (c) marker detection and recognition of platform dock; (d) dock with light beacons combined with triangular black and white codes
    Identification of underwater guidance markers and light beacons. (a) Classification and identification of markers; (b) identification of 8 lights
    Underwater binocular vision positioning principle. (a) Pixel coordinates of camera at guide light center in dock; (b) principle of binocular stereo vision
    Research on binocular vision guidance technology by Myint’s team[111-115]. (a) ROV binocular vision guidance pool test; (b) ROV binocular vision guidance sea trial; (c) active light-emitting 3D beacon; (d)‒(f) 3D beacon images and recognition results captured by binocular cameras in water with different turbidity
    Distance-exposure time calibration chart and effectiveness comparison between fixed exposure and automatic exposure. (a) Comparison between underwater unpolarized imaging and polarized imaging; (b) comparison of effects between underwater fixed exposure and automatic exposure
    AUV underwater recovery positioning and optical guidance tests. (a) Onshore test of guidance lights; (b) recognition of guidance lights by binocular cameras; (c) guidance light structure design; (d) AUV guidance head design diagram; (e) optical guidance positioning bracket; (f) onshore attitude and azimuth test; (g) underwater attitude and azimuth test; (h)(i) underwater AUV docking tests
    Principle of four-quadrant photodetector
    Optical guidance detector elements based on photoelectric detection arrays. (a) REMUS 600 with four-quadrant photodetectors; (b) hemispherical 5×5 optical detector array; (c) 7 photodetectors and lenses form a hemispherical array
    Diagrams of AUV guidance location system. (a) AUV underwater recovery optical guidance process; (b) AUV coordinate system diagram; (c) guidance light deflection angle geometric definition; (d) guidance light coordinate system diagram; (e) ROV remote arming; (f) real-time solution and location; (g) daytime sea trial guidance location; (h) night sea trial guidance location
    • Table 1. Summary of status of monocular visual guidance and localization methods

      View table

      Table 1. Summary of status of monocular visual guidance and localization methods

      AuthorExperiment environmentRangeFrequency or timeEvaluating indicatorComputing platformRef. No
      Park et al.Pool≤10 m10‒15 HzAverage position error incamera coordinate: 200 pixelPC/104+ standard single-board computer[1112]
      Palomeras et al.Tank≤10 m15 Hz[13]
      Fan et al.Pool≤2.8 m

      Lateral positioning

      error is ≤0.2 m;

      longitudinal and vertical positioning errors are ≤ 0.15 m

      [14]
      Zhang et al.PoolPosition error is 0.1 m[16]
      Trslic et al.SeaPC[17]
      Figueiredo et al.Pool≤2.5 m20 HzPosition error is 0.1 mRaspberry Pi[19]
      Zhang et al.Pool≤10 m30 s[23]
      Zhang et al.Pool≤5 m50 s[24]
      Rannnestad et al.Sea≤6 m26‒30 Hz[20]
      Lv et al.Pool≤10 m

      Position error (X or Y) is ≤80 mm

      Position error (Z) ≤ is 140 mm

      [21]
      Yan et al.Pool3.07 sMatching accuracy is 100%

      Intel® TM6600 CPU,

      2.4 GHz, 1.0 GB

      EMS memory,

      [22]
      Zhang et al.Pool≤1.3 m13.5709 msThinkPad P52s machine[23]
      Lin et al.pool≤1.5 m35 HzError range is 3‒20 cmPC[26]
      Zhang et al.Lake≤6 mAngle error is 1°[27]
      Zhou et al.Tank[40]
      Wat et al.Air≤7 m30 sAverage angle error is 10°PC[41]
    • Table 2. Summary of status of deep learning based monocular visual gudiance and localization methods

      View table

      Table 2. Summary of status of deep learning based monocular visual gudiance and localization methods

      AuthorMethodEnvironmentRangeFrequencyEvaluating indicatorComputing platformRef. No
      Singh et al.YOLOPool≤15 m6 HzAverage location error is 890 mmNVIDIA Jetson TX2[28]
      Ren et al.YOLOV3 & P4PPool≤10 mAverage location error is 30 mm[30]
      Zhang et al.SNN & P4PPool[33]
      Jyothi et al.YOLOV5Tank≤10 mSuccess rate is 95%128 core NVIDIA Maxwell edgeArm cortex-A57 MP[36]
      Lu et al.YOLOV5Pool≤15 mIntel® Xeon® Silver 4110 CPU @2.10 GHz 16 GB GeForce RTX 3060 Ti 11 GB[37]
      Liu et al.CNNSeaSuccess rate is 88%[40]
      Yahya et al.CNNTank≤8 m60 HzSuccess rate is 95%2.6 GHz Intel Core i7[42]
    • Table 3. Summary of status of camera calibration methods

      View table

      Table 3. Summary of status of camera calibration methods

      AuthorComplexityRobustCostAccuracy/errorRef. No
      Ge et al.LowLowLow0.19 pixel[55]
      Chen et al.MiddleHighMiddle0.05 pixel[56]
      Zhang et al.LowMiddleLow1.3 pixel[57]
      Zhang et al.HighMiddleHigh0.03 cm[58]
      HartleyLowHighLow0.5 pixel[59]
      Yang et al.LowHighLowLow[60]
      Wu et al.MiddleMiddleMiddleLow[61]
      Wu et al.LowMiddleLowLow[62]
    • Table 4. Summary of status of binocular vision guidance and localization methods

      View table

      Table 4. Summary of status of binocular vision guidance and localization methods

      AuthorEnvironmentRangeFrequency/timeEvaluating indicatorComputing platformRef. No
      Myint et al.Pool(0.35 m,2 m)165 msAverage location error: 40 mmROV[111]
      Myint et al.Sea trial 50 m depth(0.35 m, 15 m)33 msAverage location error: 10 mmROV[115]
      Shiet al.Lab258 msAverage location error: 5 mPentium 42 GHz[129]
      Liet al.Pool≤30 m0.5 sAverage location error: 300 mmWL-3 mini-micro AUV[130]
      Zhuet al.Pool≤10 m7.5 msAverage location error (@10 m): 140 mmAverage location error (@5 m): 92 mmAverage location error (@3 m): 53 mm[132]
      Xuet al.Pool & lakePool: ≤20 mLake: ≤7 m21 msAverage location error (X, pool): 14 mmAverage location error (Y, pool): 7.8 mmAverage location error (X, lake): 2.8 mmAverage location error (Y, lake): 3.2 mmIntel i7-8750 processor and an NVIDIA GTX 1060 graphics[133‒134]
      Guoet al.Pool≤2.81 mAverage location error: 200 mmAmphibious spherical robot[138]
      Hsuet al.Tank≤0.95 m[139]
    • Table 5. Summary of status of optically guided localization methods based on position detectors

      View table

      Table 5. Summary of status of optically guided localization methods based on position detectors

      AuthorEnvironmentRangeFrequency/timeEvaluating indicatorComputing platformRef. No
      Martin et al.Sea trial≤10 mRecovery success rate: 48.40%[152]
      Fletcher et al.Sea trial≤10 mRecovery success rate: 41.70%i7‒3770 CPU[153]
      Evans et al.Pool≤5 m1 HzPositioning accuracy: 0.2 m; detection angle: 10°[156]
      Erenet al.Pool≤8.5 m5 HzPositioning accuracy of x, y and z axes: 0.13 m, 0.13 m and 0.18 m; pitch and yaw errors: <5°[157]
      OursSimulation & Sea trial

      0.8-

      20 m

      5.560 ms

      0.8‒20 m absolute coordinate error: 58.292 mm;

      ≤3 m absolute coordinate error: 6.647 mm

      ARM Cortex‒A78AE v8.2 64 CPU[160]
    Tools

    Get Citation

    Copy Citation Text

    Xuelong Li, Zhe Sun, Guojun Wu. Optical Guidance for AUV Underwater Docking (Invited)[J]. Acta Optica Sinica, 2025, 45(12): 1200001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Nov. 26, 2024

    Accepted: Apr. 22, 2025

    Published Online: Jun. 23, 2025

    The Author Email: Xuelong Li (xuelong_li@ieee.org), Zhe Sun (sunzhe@nwpu.edu.cn), Guojun Wu (wuguojun@opt.ac.cn)

    DOI:10.3788/AOS241803

    CSTR:32393.14.AOS241803

    Topics