Acta Optica Sinica, Volume. 38, Issue 10, 1010002(2018)

Depth Map Super-Resolution Based on Two-Channel Convolutional Neural Network

Sumei Li*, Guoqing Lei*, and Ru Fan
Author Affiliations
  • School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
  • show less
    Figures & Tables(10)
    Two-channel convolutional neural network for depth map super-resolution model
    Residual unit
    (a) Deep network, (b) shallow network and (c) converged network output
    Comparison of reconstruction results obtained by different methods. (a) Original image; (b) bicubic algorithm; (c) SRCNN algorithm; (d) proposed algorithm
    • Table 1. Parameter settings of the model

      View table

      Table 1. Parameter settings of the model

      NameC1C2C3C4C5C6C7C8C9C10C11DC1DC1
      Number646416121244441148
      Size3×31×11×13×31×17×75×53×31×15×51×115×1515×15
      Pad1001032102077
      Step111111111114/84/8
    • Table 2. Quantitative comparison of different algorithms on Art,Books and Moebius (RMSE)

      View table

      Table 2. Quantitative comparison of different algorithms on Art,Books and Moebius (RMSE)

      AlgorithmArtBooksMoebius
      Bilinear4.1475.9951.6732.3941.4992.198
      Ref.[23]3.7945.5031.5462.2091.4392.054
      Ref.[13]4.0564.7121.7011.9491.3861.820
      Ref.[15]3.4984.1651.5301.9941.3491.804
      Ref.[12]3.7884.9741.5722.0971.4341.878
      Ref.[18]3.7854.7871.6031.9921.4581.914
      Ref.[22]-5.798-2.728-2.422
      Ref.[25]2.5253.9571.0981.6460.9791.459
      Proposed1.6132.1851.1951.4481.1981.457
    • Table 3. Quantitative comparison of different algorithms on Dolls,Laundry and Reindeer (RMSE)

      View table

      Table 3. Quantitative comparison of different algorithms on Dolls,Laundry and Reindeer (RMSE)

      AlgorithmDollsLaundryReindeer
      Bicubic1.3051.8552.4083.4522.8093.986
      Ref.[15]1.3011.7452.1322.7702.4072.987
      Ref.[9]1.977-2.969-3.178-
      CLMF0[28]1.2711.8782.3123.0842.6903.417
      CLMF1[28]1.2671.7072.5122.8922.6993.331
      Ref.[18]1.3551.8592.5113.7572.7123.789
      Ref.[21]0.9211.2591.2122.0771.5592.583
      Ref.[25]0.9891.4451.6302.4661.9142.878
      Proposed0.8421.4621.2851.5471.2371.600
    • Table 4. Quantitative comparison of different algorithms on Venus,Teddy and Cones (RMSE)

      View table

      Table 4. Quantitative comparison of different algorithms on Venus,Teddy and Cones (RMSE)

      AlgorithmVenusTeddyCones
      Ref.[9]2.597-4.030-5.740-
      Ref.[10]2.331-3.718-5.490-
      Ref.[21]0.8191.1691.8222.3702.9744.516
      Ref.[18]1.742-2.595-3.498-
      Ref.[22]1.7342.1342.7233.4683.9855.344
      SRCNN[24]0.7891.7061.9853.2523.5855.180
      SRCNN20.7181.5931.8913.1363.4395.171
      Ref.[25]1.1911.7862.0263.0153.0784.865
      Proposed0.5310.7491.3751.7801.4481.898
    • Table 5. Quantitative comparison of different algorithms by a scaling factor of 4

      View table

      Table 5. Quantitative comparison of different algorithms by a scaling factor of 4

      DatasetBicubic algorithmSRCNN algorithm[24]Proposed algorithm
      PSNRSSIMPSNRSSIMPSNRSSIM
      Art29.810.879931.200.926031.820.9562
      Books30.220.928331.330.942531.880.9639
      Dolls31.670.917932.440.930032.610.9438
      Laundry32.640.918934.240.933034.370.9442
      Moebius30.920.925831.890.940332.520.9536
      Reindeer31.390.929033.300.951933.860.9647
      Cones28.610.899329.810.919030.570.9048
      Teddy27.610.916728.520.934329.700.9474
      Venus42.450.982745.520.989846.190.9923
    • Table 6. [in Chinese]

      View table

      Table 6. [in Chinese]

      AlgorithmArtBooksDollsLaundryMoebiusReindeerConesTeddyVenus
      Bicubic0.03980.00450.00340.00480.00350.00360.00420.00400.0036
      SRCNN0.26130.25800.25500.24590.25190.24560.24920.24790.2498
      Proposed0.27470.20080.16900.16240.22610.21070.16700.23240.1697
    Tools

    Get Citation

    Copy Citation Text

    Sumei Li, Guoqing Lei, Ru Fan. Depth Map Super-Resolution Based on Two-Channel Convolutional Neural Network[J]. Acta Optica Sinica, 2018, 38(10): 1010002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Feb. 6, 2018

    Accepted: May. 16, 2018

    Published Online: May. 9, 2019

    The Author Email:

    DOI:10.3788/AOS201838.1010002

    Topics