Laser & Infrared, Volume. 55, Issue 2, 215(2025)

Detection of aerosol hygroscopic growth in Tibetan Plateau by LiDAR

ZHANG Bo-wen1,2, FAN Guang-qiang1、*, ZHANG Tian-shu1, and XIANG Yan3
Author Affiliations
  • 1Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
  • 2University of Science and Technology of China, Hefei 230026, China
  • 3Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
  • show less
    References(17)

    [1] [1] Chen, J., Li, Z., Lv, M., et al. Aerosol hygroscopic growth, contributing factors, and impact on haze events in a severely polluted region in northern China[J]. Atmos. Chem. Phys., 2019, 19: 1327-1342.

    [2] [2] Hnel, G. The Properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air[J]. Advances in Geophysics, 1976, 19: 73-188.

    [3] [3] Zieger, P., Aalto, P., Aaltonen, V., et al. Low hygroscopic scattering enhancement of boreal aerosol and the implications for a columnar optical closure study[J]. Atmos. Chem. Phys., 2015, 15: 7247-7267.

    [4] [4] Leinert, S., Wiedensohler, A. A DMA and APS based technique for measuring aerodynamic hygroscopic growth factors of micrometer-size aerosol particles[J]. Journal of Aerosol Science, 2008, 39: 393-402.

    [5] [5] Lee, A., Ling, T., Chan, C. Understanding hygroscopic growth and phase transformation of aerosols using single particle Raman spectroscopy in an electrodynamic balance[J]. Faraday Discussions, 2008, 137: 245-63.

    [6] [6] Frey, A., Rose, D., Wehner, B., et al. Application of the Volatility-TDMA technique to determine the number size distribution and mass concentration of less volatile particles[J]. Aerosol Science and Technology, 2008, 42: 817-828.

    [7] [7] Francisco, N., Martucci, G., Coen, M., et al. Towards continuous monitoring of aerosol hygroscopicity by Raman lidar measurements at the EARLINET station of Payerne[J]. Atmos. Chem. Phys., 2019: 289.

    [8] [8] Fernndez, A., Apituley, A., Veselovskii, I., et al. Study of aerosol hygroscopic events over the Cabauw experimental site for atmospheric research (CESAR) using the multi-wavelength Raman lidar Caeli[J]. Atmos. Env., 2015, 120: 484-498.

    [9] [9] Pahlow, M., Feingold, G., Jefferson, A., et al. Comparison between lidar and nephelometer measurements of aerosol hygroscopicity at the Southern Great Plains Atmospheric Radiation Measurement site[J]. Journal of Geophysical Research: Atmospheres.2006, 111: 1-25.

    [10] [10] Veselovskii, I., Whiteman, D., Kolgotin, A., et al. Demonstration of aerosol property profiling by multiwavelength lidar under varying relative humidity conditions[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26: 1543-1557.

    [11] [11] Paolo, D., Donato, S., Rohini, B., et al. Raman lidar observations of a Saharan dust outbreak event: characterization of the dust optical properties and determination of particle size and microphysical parameters-ScienceDirect[J]. Atmos. Env., 2012, 50: 66-78.

    [14] [14] Leblanc, T., Mcdermid, I., Walsh, T. Ground-based water vapor Raman lidar measurements up to the upper troposphere and lower stratosphere for long-term monitoring[J]. Atmos. Meas, Tech., 2012, 5: 17-36.

    [15] [15] Lv, M., Liu, D., Li, Z., et al. Hygroscopic growth of atmospheric aerosol particles based on lidar, radiosonde, and in situ measurements: case studies from the Xinzhou field campaign[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 188: 60-70.

    [16] [16] Kasturi, D., Dimitris, G., Hwee, S., et al. Overview of atmospheric aerosol studies in Malaysia: known and unknown[J]. Atmos. Res., 2016, 182: 302-318.

    [17] [17] Andrs, E., Francisco, N., Mara, J., et al. Hygroscopic growth study in the framework of EARLINET during the SLOPE I campaign: synergy of remote sensing and in situ instrumentation[J]. Atmos. Chem. Phys., 2018, 18: 7001-7017.

    [18] [18] Hnel, G. An attempt to interpret the humidity dependencies of the aerosol extinction and scattering coefficients. Atmos[J]. Env., 1981, 15: 403-406.

    [19] [19] Dawson, K., Ferrare, R., Moore, R., et al. Ambient aerosol hygroscopic growth from combined raman lidar and HSRL[J]. JGR Atmos, 2020, 125: 1-13.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Bo-wen, FAN Guang-qiang, ZHANG Tian-shu, XIANG Yan. Detection of aerosol hygroscopic growth in Tibetan Plateau by LiDAR[J]. Laser & Infrared, 2025, 55(2): 215

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 6, 2024

    Accepted: Apr. 3, 2025

    Published Online: Apr. 3, 2025

    The Author Email: FAN Guang-qiang (gqfan@aiofm.ac.cn)

    DOI:10.3969/j.issn.1001-5078.2025.009

    Topics