The invention of chirped pulse amplification [
High Power Laser Science and Engineering, Volume. 8, Issue 2, 02000e23(2020)
Simultaneous observation of ultrafast electron and proton beams in TNSA
The interaction of ultra-intense high-power lasers with solid-state targets has been largely studied for the past 20 years as a future compact proton and ion source. Indeed, the huge potential established on the target surface by the escaping electrons provides accelerating gradients of TV/m. This process, called target normal sheath acceleration, involves a large number of phenomena and is very difficult to study because of the picosecond scale dynamics. At the SPARC_LAB Test Facility, the high-power laser FLAME is employed in experiments with solid targets, aiming to study possible correlations between ballistic fast electrons and accelerated protons. In detail, we have installed in the interaction chamber two different diagnostics, each one devoted to characterizing one beam. The first relies on electro-optic sampling, and it has been adopted to completely characterize the ultrafast electron components. On the other hand, a time-of-flight detector, based on chemical-vapour-deposited diamond, has allowed us to retrieve the proton energy spectrum. In this work, we report preliminary studies about simultaneous temporal resolved measurements of both the first forerunner escaping electrons and the accelerated protons for different laser parameters.
1 Introduction
The invention of chirped pulse amplification [
In particular, the use of intensities
The ion/proton production and acceleration processes are extremely connected to the electron population directly accelerated by the laser in the early stage of the so-called target normal sheath acceleration (TNSA) phenomenon. The electron energy spectrum is distributed following a Maxwell distribution with a characteristic energy where
Sign up for High Power Laser Science and Engineering TOC Get the latest issue of High Power Laser Science and Engineering delivered right to you!Sign up now
These hot electrons cross the target and leave an unbalanced positive charge on it, establishing a quasi-static potential. While most of them are stopped in the vicinity of the back surface, within a distance of the Debye length[
At the SPARC_LAB Test Facility[
In addiction, we added a time-of-flight (TOF) diamond detector to the pre-existing experimental setup[
2 Experimental setup
The experiment has been carried out at the SPARC_LAB Test Facility[
A small portion of the main beam is split and used as a completely temporal jitter-free probe laser line. The two laser beams are synchronized at the fs level in the interaction point by means of an autocorrelator, consisting of an
The experimental setup is shown in Figure
The temporal structure of the positively charged beam has been measured by means of an electromagnetic-pulse-free TOF diamond detector[
3 Experimental results and discussion
We have performed simultaneous measurements on ultrafast electron charge and temporal length, and proton energy by changing the laser temporal length from 30 to 300 fs (full width at half maximum (FWHM)) and the focal spot size from 30 to 120 μm (
The laser energy on the target was kept constant at 2 J.
All the experimental values are reported with their own statistical error, since more shots have been collected for each parameter set.
Initially, we tried to determine our best thickness value among the available ones, i.e., 7 μm, 10 μm and 20 μm, optimizing the proton energy as seen in previous works[
Figure
Once the best performing target was implemented in the setup, the experimental campaign was focused on the behaviour of the electron and the proton varying the laser parameters.
For both the laser spot size and temporal duration scaling, the proton measured energy has been fitted with a power law, namely, where
Figure
This can be explained starting from the characteristic hot electron temperature
Figure
We found for the maximum proton energy as a function of the laser spot size
Furthermore, rewriting Equation (
4 Comments
The two different scenarios explored in this experimental campaign gave us important feedback on the TNSA process.
System.Xml.XmlElementSystem.Xml.XmlElementSystem.Xml.XmlElementSystem.Xml.XmlElement
5 Conclusions
In conclusion, a characterization of the emission of fast electrons and protons, occurring in ultra-intense laser and solid matter interactions, has been performed by mainly varying the laser temporal duration and focal spot size, using two different detectors. Indeed, thanks to 100 fs temporal resolution EOS diagnostics, fast electron charge has been measured, while a chemical-vapour-deposited diamond-based TOF detector has provided the proton energy spectra.
We found an optimum thickness of 10 μm, obtaining the highest proton energy, ∼2. 9 ± 0. 1 MeV, for our experimental conditions, while the fast electron charge was almost constant, ∼1. 8 ± 0. 4 nC. By varying the laser temporal duration in the 30–300 fs range, we observed a constant behaviour in the maximum proton energy, as confirmed in Ref. [
These results show the potentialities of our simultaneous detection system for both fast electrons and protons emitted as a consequence of the interaction between a high-intensity laser pulse and a solid-state target. In particular, it may be employed to better understand the whole TNSA phenomenon and how the fast electron beam can influence the proton acceleration and, at the same time, how it can be used to infer the expected proton spectra.
[1] D. Strickland, G. Mourou. Opt. Commun., 56, 219(1985).
[2] C. Danson, D. Hillier, N. Hopps, D. Neely. High Power Laser Sci. Eng., 3, e3(2015).
[3] R. A. Snavely, M. H. Key, S. P. Hatchett, T. E. Cowan, M. Roth, T. W. Phillips, M. A. Stoyer, E. A. Henry, T. C. Sangster, M. S. Singh, S. C. Wilks, A. MacKinnon, A. Offenberger, D. M. Pennington, K. Yasuike, A. B. Langdon, B. F. Lasinski, J. Johnson, M. D. Perry, E. M. Campbell. Phys. Rev. Lett., 85, 2945(2000).
[4] S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, M. Singh, S. Hatchett, M. H. Key, D. Pennington, A. MacKinnon, R. A. Snavely. Phys. Plasmas, 8, 542(2001).
[5] M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S. V. Bulanov, E. M. Campbell, M. D. Perry, H. Powell. Phys. Rev. Lett., 86, 436(2001).
[6] H. Schwoerer, S. Pfotenhauer, O. Jäckel, K.-U. Amthor, B. Liesfeld, W. Ziegler, R. Sauerbrey, K. W. D. Ledingham, T. Esirkepov. Nature, 439, 445(2006).
[7] T. Bartal, M. E. Foord, C. Bellei, M. H. Key, K. A. Flippo, S. A. Gaillard, D. T. Offermann, P. K. Patel, L. C. Jarrott, D. P. Higginson, M. Roth, A. Otten, D. Kraus, R. B. Stephens, H. S. McLean, E. M. Giraldez, M. S. Wei, D. C. Gautier, F. N. Beg. Nature Phys., 8, 139(2012).
[8] J. Badziak, S. Głowacz, S. Jabłoński, P. Parys, J. Wołowski, H. Hora, J. Krása, L. Láska, K. Rohlena. Plasma Phys. Control. Fusion, 46, B541(2004).
[9] A. G. Krygier, D. W. Schumacher, R. R. Freeman. Phys. Plasmas, 21(2014).
[10] A. Macchi, M. Borghesi, M. Passoni. Rev. Mod. Phys., 85, 751(2013).
[11] M. Ferrario, D. Alesini, M. Anania, A. Bacci, M. Bellaveglia, O. Bogdanov, R. Boni, M. Castellano, E. Chiadroni, A. Cianchi, S. B. Dabagov, C. De Martinis, D. Di Giovenale, G. Di Pirro, U. Dosselli, A. Drago, A. Esposito, R. Faccini, A. Gallo, M. Gambaccini, C. Gatti, G. Gatti, A. Ghigo, D. Giulietti, A. Ligidov, P. Londrillo, S. Lupi, A. Mostacci, E. Pace, L. Palumbo, V. Petrillo, R. Pompili, A. R. Rossi, L. Serafini, B. Spataro, P. Tomassini, G. Turchetti, C. Vaccarezza, F. Villa, G. Dattoli, E. Di Palma, L. Giannessi, A. Petralia, C. Ronsivalle, I. Spassovsky, V. Surrenti, L. Gizzi, L. Labate, T. Levato, J. V. Rau. Nucl. Instrum. Methods Phys. Res. B, 309, 183(2013).
[12] F. Bisesto, M. Anania, P. Maria, M. Botton, E. Chiadroni, A. Cianchi, A. Curcio, M. Ferrario, M. Galletti, R. Pompili, E. Schleifer, A. Zigler. Quantum Beam Sci., 1, 13(2017).
[13] F. G. Bisesto, M. P. Anania, M. Botton, M. Castellano, E. Chiadroni, A. Cianchi, A. Curcio, M. Ferrario, M. Galletti, Z. Henis, R. Pompili, E. Schleifer, V. Shpakov, A. Zigler. Nucl. Instrum. Methods Phys. Res. A, 909, 364(2018).
[14] F. G. Bisesto, M. P. Anania, M. Bellaveglia, E. Chiadroni, A. Cianchi, G. Costa, A. Curcio, D. Di Giovenale, G. Di Pirro, M. Ferrario, M. Galletti, Z. Henis, R. Pompili, E. Schleifer, A. Zigler. Nucl. Instrum. Methods Phys. Res. A, 909, 452(2018).
[15] R. Pompili, M. P. Anania, F. Bisesto, M. Botton, M. Castellano, E. Chiadroni, A. Cianchi, A. Curcio, M. Ferrario, M. Galletti, Z. Henis, M. Petrarca, E. Schleifer, A. Zigler. Opt. Express, 24, 29512(2016).
[16] M. Galletti, F. G. Bisesto, M. P. Anania, M. Ferrario, R. Pompili, A. Poyé, V. Tikhonchuk, A. Zigler. Appl. Phys. Lett., 116(2020).
[17] R. Pompili, M. P. Anania, F. Bisesto, M. Botton, M. Castellano, E. Chiadroni, A. Cianchi, A. Curcio, M. Ferrario, M. Galletti, Z. Henis, M. Petrarca, E. Schleifer, A. Zigler. Sci. Rep., 6(2016).
[18] R. Pompili, M. P. Anania, F. Bisesto, M. Botton, E. Chiadroni, A. Cianchi, A. Curcio, M. Ferrario, M. Galletti, Z. Henis, M. Petrarca, E. Schleifer, A. Zigler. Sci. Rep., 8, 3243(2018).
[19] F. G. Bisesto, M. P. Anania, M. Botton, E. Chiadroni, A. Cianchi, A. Curcio, M. Ferrario, M. Galletti, Z. Henis, R. Pompili, E. Schleifer, A. Zigler. Nucl. Instrum. Methods Phys. Res. A, 909, 398(2018).
[20] F. Bisesto, M. Galletti, M. P. Anania, M. Ferrario, R. Pompili, M. Botton, A. Zigler, F. Consoli, M. Salvadori, P. Andreoli, C. Verona. High Power Laser Sci. Eng., 7, e53(2019).
[21] D. Margarone, J. Krasa, L. Giuffrida, A. Picciotto, L. Torrisi, T. Nowak, P. Musumeci, A. Velyhan, J. Prokuupek, L. Laska, T. Mocek, J. Ullschmied, B. Rus. J. Appl. Phys., 109(2011).
[22] S. Busold, D. Schumacher, O. Deppert, C. Brabetz, S. Frydrych, F. Kroll, M. Joost, H. Al-Omari, A. Blažević, B. Zielbauer, I. Hofmann, V. Bagnoud, T. E. Cowan, M. Roth. Phys. Rev. Spec. Top. Accel. Beams, 16(2013).
[23] L. A. Gizzi, D. Giove, C. Altana, F. Brandi, P. Cirrone, G. Cristoforetti, A. Fazzi, P. Ferrara, L. Fulgentini, P. Koester, L. Labate, G. Lanzalone, P. Londrillo, D. Mascali, A. Muoio, D. Palla, F. Schillaci, S. Sinigardi, S. Tudisco, G. Turchetti. Appl. Sci., 7, 984(2017).
[24] F. Bisesto, M. Galletti, M. P. Anania, M. Ferrario, R. Pompili, M. Botton, E. Schleifer, A. Zigler. High Power Laser Sci. Eng., 7, e56(2019).
[25] A. L. Cavalieri. Electro-Optic Characterization of Femtosecond Electron Bunches(2005).
[26] R. De Angelis, F. Consoli, C. Verona, G. Di Giorgio, P. Andreoli, G. Cristofari, M. Cipriani, F. Ingenito, M. Marinelli, G. Verona-Rinati. J. Instrum., 11(2016).
[27] M. Cipriani, F. Consoli, P. L. Andreoli, D. Batani, A. Bonasera, G. Boutoux, F. Burgy, G. Cristofari, R. De Angelis, G. Di Giorgio, J. E. Ducret, A. Flamigni, D. Giulietti, K. Jakubowska, C. Verona, G. Verona-Rinati. J. Instrum., 14(2019).
[28] J. Fuchs, P. Antici, E. d’Humières, E. Lefebvre, M. Borghesi, E. Brambrink, C. A. Cecchetti, M. Kaluza, V. Malka, M. Manclossi, S. Meyroneinc, P. Mora, J. Schreiber, T. Toncian, H. Pépin, P. Audebert. Nature Phys., 2, 48(2006).
[29] P. L. Poole, L. Obst, G. E. Cochran, J. Metzkes, H. P. Schlenvoigt, I. Prencipe, T. Kluge, T. Cowan, U. Schramm, D. W. Schumacher, K. Zeil. New J. Phys., 20(2018).
[30] J. Schreiber, F. Bell, F. Grüner, U. Schramm, M. Geissler, M. Schnürer, S. Ter-Avetisyan, B. M. Hegelich, J. Cobble, E. Brambrink, J. Fuchs, P. Audebert, D. Habs. Phys. Rev. Lett., 97(2006).
[31] K. Zeil, S. D. Kraft, S. Bock, M. Bussmann, T. E. Cowan, T. Kluge, J. Metzkes, T. Richter, R. Sauerbrey, U. Schramm. New J. Phys., 12(2010).
[32] Y. Oishi, T. Nayuki, T. Fujii, Y. Takizawa, X. Wang, T. Yamazaki, K. Nemoto, T. Kayoiji, T. Sekiya, K. Horioka, Y. Okano, Y. Hironaka, K. G. Nakamura, K. Kondo, A. A. Andreev. Phys. Plasmas, 12(2005).
[33] C. M. Brenner, P. McKenna, D. Neely. Plasma Phys. Control. Fusion, 56(2014).
Get Citation
Copy Citation Text
Fabrizio Bisesto, Mario Galletti, Maria Pia Anania, Gemma Costa, Massimo Ferrario, Riccardo Pompili, Arie Zigler, Fabrizio Consoli, Mattia Cipriani, Martina Salvadori, Claudio Verona. Simultaneous observation of ultrafast electron and proton beams in TNSA[J]. High Power Laser Science and Engineering, 2020, 8(2): 02000e23
Category: Research Articles
Received: Jan. 10, 2020
Accepted: Apr. 1, 2020
Posted: Apr. 2, 2020
Published Online: Jun. 10, 2020
The Author Email: Fabrizio Bisesto (fabrizio.giuseppe.bisesto@lnf.infn.it)