Laser & Optoelectronics Progress, Volume. 61, Issue 7, 0706010(2024)
Review of Blue-Green Wavelength Division Multiplexing Technology (Invited)
[1] Haas H. LiFi is a paradigm-shifting 5G technology[J]. Reviews in Physics, 3, 26-31(2018).
[2] O’Brien D, Rajbhandari S, Chun H. Transmitter and receiver technologies for optical wireless[J]. Philosophical Transactions Series A: Mathematical, Physical, and Engineering Sciences, 378, 20190182(2020).
[3] Chi N, Zhou Y J, Wei Y R et al. Visible light communication in 6G: advances, challenges, and prospects[J]. IEEE Vehicular Technology Magazine, 15, 93-102(2020).
[4] Huang T Y, Yang W, Wu J et al. A survey on green 6G network: architecture and technologies[J]. IEEE Access, 7, 175758-175768(2019).
[5] Chi N, Jia J L. Visible light communication towards 6G[J]. ZTE Technology Journal, 26, 11-19(2020).
[6] Shi J Y, Niu W Q, Xu Z Y et al. Key technology of visible light communication towards 6G[J]. Radio Communications Technology, 47, 692-697(2021).
[7] Zeng Z Q, Fu S, Zhang H H et al. A survey of underwater optical wireless communications[J]. IEEE Communications Surveys & Tutorials, 19, 204-238(2017).
[8] Kaushal H, Kaddoum G. Underwater optical wireless communication[J]. IEEE Access, 4, 1518-1547(2016).
[9] MacLure D M, McKendry J J D, Islim M S et al. 10 Gbps wavelength division multiplexing using UV-A, UV-B, and UV-C micro-LEDs[J]. Photonics Research, 10, 516-523(2022).
[10] Qiu P J, Zhu S J, Jin Z X et al. Beyond 25 Gbps optical wireless communication using wavelength division multiplexed LEDs and micro-LEDs[J]. Optics Letters, 47, 317-320(2022).
[12] Ciaramella E, Arimoto Y, Contestabile G et al. 1.28 terabit/s (32×40 Gbit/s) wdm transmission system for free space optical communications[J]. IEEE Journal on Selected Areas in Communications, 27, 1639-1645(2009).
[13] Yeh C H, Hsu W H, Wang B Y et al. Fiber- and FSO-protected connections for long-reach TWDM access architecture with fault protection[J]. IEEE Access, 8, 189982-189988(2020).
[14] Kong M W, Lv W C, Ali T et al. 10-m 9.51-Gb/s RGB laser diodes-based WDM underwater wireless optical communication[J]. Optics Express, 25, 20829-20834(2017).
[15] Li C Y, Lu H H, Tsai W S et al. White-lighting and WDM-VLC system using transmission gratings and an engineered diffuser[J]. Optics Letters, 45, 6206-6209(2020).
[16] Tsai W S, Lu H H, Wu H W et al. 500 Gb/s PAM4 FSO-UWOC convergent system with a R/G/B five-wavelength polarization-multiplexing scheme[J]. IEEE Access, 8, 16913-16921(2020).
[17] Marchetti R, Lacava C, Carroll L et al. Coupling strategies for silicon photonics integrated chips[J]. Photonics Research, 7, 201-239(2019).
[18] Shuai Y Q, Zhou Z P, Su H. Toward practical optical phased arrays through grating antenna engineering[J]. Photonics, 10, 520(2023).
[19] van Acoleyen K, Bogaerts W, Jágerská J et al. Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator[J]. Optics Letters, 34, 1477-1479(2009).
[20] Hutchison D N, Sun J, Doylend J K et al. High-resolution aliasing-free optical beam steering[J]. Optica, 3, 887-890(2016).
[21] Raval M, Poulton C V, Watts M R. Unidirectional waveguide grating antennas with uniform emission for optical phased arrays[J]. Optics Letters, 42, 2563-2566(2017).
[22] Trinh P D, Yegnanarayanan S, Coppinger F et al. Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity[J]. IEEE Photonics Technology Letters, 9, 940-942(1997).
[23] Siew S Y, Li B, Gao F et al. Review of silicon photonics technology and platform development[J]. Journal of Lightwave Technology, 39, 4374-4389(2021).
[24] Poulton C V, Byrd M J, Raval M et al. Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths[J]. Optics Letters, 42, 21-24(2017).
[25] Chul Shin M, Mohanty A, Watson K et al. Chip-scale blue light phased array[J]. Optics Letters, 45, 1934-1937(2020).
[26] Wang H J, Chen Z M, Sun C M et al. Broadband silicon nitride nanophotonic phased arrays for wide-angle beam steering[J]. Optics Letters, 46, 286-289(2021).
[27] Sun C M, Yang L S, Li B H et al. Parallel emitted silicon nitride nanophotonic phased arrays for two-dimensional beam steering[J]. Optics Letters, 46, 5699-5702(2021).
[28] Sun C M, Li B H, Shi W et al. Large-scale and broadband silicon nitride optical phased arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 28, 8200710(2022).
[29] Poon J K S, Govdeli A, Sharma A et al. Silicon photonics for the visible and near-infrared spectrum[J]. Advances in Optics and Photonics, 16, 1-59(2024).
[30] Hashemi H. A review of semiconductor-based monolithic optical phased array architectures[J]. IEEE Open Journal of the Solid-State Circuits Society, 1, 222-234(2021).
[31] Blanche P A. Holography, and the future of 3D display[J]. Light: Advanced Manufacturing, 2, 446-459(2021).
[32] Sun C M, Liu W W, Li B H et al. Efficient blue-green light phased array based on high-contrast grating as a demultiplexer[J]. IEEE Photonics Technology Letters, 35, 777-780(2023).
[34] Di Y J, Sun C M, Chen S Y et al. Capacity enhancement of VLC by blue-green wavelength division multiplexing using optical phased array[C], M4F.2(2023).
[35] Sun C M, Li B H, Zhang A D. High-resolution radiation characterization for an uniformly emitted SiNx nanophotonic phased array[C](2022).
[36] Nie X M, Sun C M, Wang H J et al. Detection of near- and far-field radiation pattern of a silicon-on-insulator optical phase array[C](2021).
[37] Wang H J, Sun C M, Yang L S et al. Uniform emission of large-scale optical phase arrays with wide wavelength tuning[C](2021).
[38] Sun C M, Li B H, Zhang A D. High-resolution radiation characterization for an uniformly emitted SiNx nanophotonic phased array[C](2022).
[39] Sun C M, Li B H, Shi W et al. Theoretical model and validation for broadband optical phased arrays[C](2022).
[40] Liu W W, Li B H, Sun C M. Enhanced coupling efficiency of optical fiber to green light waveguide by optical phased array[J]. Proceedings of SPIE, 12426, 124260U(2023).
[41] Wang Y G, Huang X X, Tao L et al. 4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization[J]. Optics Express, 23, 13626-13633(2015).
[42] Dai Y Z, Chen X, Yang X Q et al. 200-m/500-Mbps underwater wireless optical communication system utilizing a sparse nonlinear equalizer with a variable step size generalized orthogonal matching pursuit[J]. Optics Express, 29, 32228-32243(2021).
[43] Zhang X B, Tang Y, Cui L et al. Grating optical antenna for spectral wavelength division multiplex visible light communication[J]. Acta Optica Sinica, 36, 0206003(2016).
[44] Chen Y, Hu C Y, Liu H L et al. Simultaneous optimization of LED layout and power allocation based on visible light communication[J]. Acta Optica Sinica, 43, 1406002(2023).
[45] Chen Y, Wu Z Q, Liu H L et al. Neural-network-based channel estimation method for visible light communication systems[J]. Acta Optica Sinica, 43, 0706004(2023).
[46] Li B, Xue Y R, Kong W C et al. High-precision optical fiber time and frequency transfer method based on wavelength division multiplexing[J]. Acta Optica Sinica, 43, 0706001(2023).
[47] Xiao H, Wang Y J, Wang Z L et al. Optimization methods for UAVs to search light source in VLC[J]. Chinese Journal of Luminescence, 44, 2277-2286(2023).
Get Citation
Copy Citation Text
Caiming Sun, Aidong Zhang. Review of Blue-Green Wavelength Division Multiplexing Technology (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(7): 0706010
Category: Fiber Optics and Optical Communications
Received: Jan. 8, 2024
Accepted: Mar. 7, 2024
Published Online: Apr. 16, 2024
The Author Email: Aidong Zhang (zhangaidong@cuhk.edu.cn)
CSTR:32186.14.LOP240714