Chinese Optics Letters, Volume. 19, Issue 9, 091405(2021)

GSA and ESA dual-wavelength pumped 2.3 μm Tm:YLF laser on the 3H43H5 transition

Fei Wang, Haitao Huang*, Haiwei Chen, Yushuo Bao, Zihan Li, and Deyuan Shen
Author Affiliations
  • School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
  • show less
    References(24)

    [1] F. Canbaz, I. Yorulmaz, A. Sennaroglu. Kerr-lens mode-locked 2.3-µm Tm3+:YLF laser as a source of femtosecond pulses in the mid-infrared. Opt. Lett., 42, 3964(2017).

    [2] I. Yorulmaz, A. Sennaroglu. Low-threshold diode-pumped 2.3-µm Tm3+:YLF lasers. IEEE J. Sel. Top. Quantum Electron., 24, 1601007(2018).

    [3] A. Muti, M. Tonelli, V. Petrov, A. Sennaroglu. Continuous-wave mid-infrared laser operation of Tm3+:KY3F10 at 2.3 µm. Opt. Lett., 44, 3242(2019).

    [4] A. Muti, F. Canbaz, M. Tonelli, J. E. Bae, F. Rotermund, V. Petrov, A. Sennaroglu. Graphene mode-locked operation of Tm3+:YLiF4 and Tm3+:KY3F10 lasers near 2.3  µm. Opt. Lett., 45, 656(2020).

    [5] A. Muti, I. Baylam, M. Tonelli, A. Sennaroglu. Tunable continuous-wave laser operation of Tm3+:BaY2F8 near 2.3 µm. Opt. Lett., 45, 4104(2020).

    [6] J. Kwiatkowski. Power and spectral analyses in diode-pumped c-cut Pbnm Tm:YAP laser. Chin. Opt. Lett., 18, 091401(2020).

    [7] C. Li, Y. X. Leng, J. J. Huo. ReSe2 as a saturable absorber in a Tm-doped yttrium lithium fluoride (Tm:YLF) pulse laser. Chin. Opt. Lett., 17, 011402(2019).

    [8] H. T. Huang, S. Q. Wang, H. W. Chen, O. L. Antipov, S. S. Balabanov, D. Y. Shen. High power simultaneous dual-wavelength CW and passively-Q-switched laser operation of LD pumped Tm:YLF at 1.9 and 2.3 µm. Opt. Express, 27, 38593(2019).

    [9] S. Q. Wang, H. T. Huang, H. W. Chen, X. Liu, S. D. Liu, J. L. Xu, D. Y. Shen. High efficiency nanosecond passively Q-switched 2.3 µm Tm:YLF laser using a ReSe2-based saturable output coupler. OSA Continuum, 2, 1676(2019).

    [10] E. Kifle, P. Loiko, L. Guillemot, J. L. Doualan, F. Starecki, A. Braud, T. Georges, J. Rouvillain, P. Camy. Watt-level diode-pumped thulium lasers around 2.3 µm. Appl. Opt., 59, 7530(2020).

    [11] A. Tyazhev, F. Starecki, S. Cozic, P. Loiko, L. Guillemot, A. Braud, F. Joulain, M. Tang, T. Godin, A. Hideur, P. Camy. Watt-level efficient 2.3  µm thulium fluoride fiber laser. Opt. Lett., 45, 5788(2020).

    [12] X. Chao, J. B. Jeffries, R. K. Hanson. Real-time, in situ, continuous monitoring of CO in a pulverized-coal-fired power plant with a 2.3 µm laser absorption sensor. Appl. Phys. B, 110, 359(2013).

    [13] F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, G. Maze. Narrow linewidth, tunable Tm3+-doped fluoride fiber laser for optical-based hydrocarbon gas sensing. IEEE J. Sel. Top. Quantum Electron., 3, 1103(1997).

    [14] J. T. Olesberg, M. A. Arnold, C. Mermelstein, J. Schmitz, J. Wagner. Tunable laser diode system for noninvasive blood glucose measurements. Appl. Spectrosc., 59, 1480(2005).

    [15] S. T. Fard, W. Hofmann, P. T. Fard, G. Böhm, M. Ortsiefer, E. Kwok, M.-C. Amann, L. Chrostowski. Optical absorption glucose measurements using 2.3-µm vertical-cavity semiconductor lasers. IEEE Photon. Technol. Lett., 20, 930(2008).

    [16] J. Wagner, Ch. Mann, M. Rattunde, G. Weimann. Infrared semiconductor lasers for sensing and diagnostics. Appl. Phys. A, 78, 505(2004).

    [17] Y. Morova, M. Tonelli, V. Petrov, A. Sennaroglu. Upconversion pumping of a 2.3 µm Tm3+:KY3F10 laser with a 1064 nm ytterbium fiber laser. Opt. Lett., 45, 931(2020).

    [18] L. Guillemot, P. Loiko, R. Soulard, A. Braud, J. L. Doualan, A. Hideur, R. Moncorgé, P. Camy. Thulium laser at ∼2.3 µm based on upconversion pumping. Opt. Lett., 44, 4071(2019).

    [19] P. Loiko, R. Soulard, L. Guillemot, G. Brasse, J. L. Doulan, A. Braud, A. Tyazhev, A. Hideur, B. Guichardaz, F. Druon, P. Camy. Efficient Tm:LiYF4 lasers at ∼2.3 µm: effect of energy-transfer upconversion. IEEE J. Quantum Electron., 55, 1700212(2019).

    [20] L. Guillemot, P. Loiko, R. Soulard, A. Braud, J. L. Doualan, A. Hideur, P. Camy. Close look on cubic Tm:KY3F10 crystal for highly efficient lasing on the 3H4 → 3H5 transition. Opt. Express, 28, 3451(2020).

    [21] W. L. Gao, J. Ma, G. Q. Xie, J. Zhang, D. W. Luo, H. Yang, D. Y. Tang, J. Ma, P. Yuan, L. J. Qian. Highly efficient 2 µm Tm:YAG ceramic laser. Opt. Lett., 37, 1076(2012).

    [22] O. L. Antipov, A. A. Novikov, N. G. Zakharov, A. P. Zinoviev. Optical properties and efficient laser oscillation at 2066 nm of novel Tm:Lu2O3 ceramics. Opt. Mater. Express, 2, 183(2012).

    [23] O. H. Sapir, J. Munch, D. J. Ottaway. Mid-infrared fiber lasers at and beyond 3.5 µm using dual-wavelength pumping. Opt. Lett., 39, 493(2014).

    [24] L. Guillemot, P. Loiko, A. Braud, J. Doualan, A. Hideur, M. Koselja, R. Moncorge, P. Camy. Continuouswave Tm:YAlO3 laser at ∼2.3  µm. Opt. Lett., 44, 5077(2019).

    CLP Journals

    [1] Qianqian Hao, Wenxin Liu, Yuqian Zu, Yangxiao Wang, Jie Liu, Liangbi Su, "Highly efficient dual-wavelength acousto-optically Q-switched Tm,La:CaF2 laser," Chin. Opt. Lett. 20, 111402 (2022)

    Cited By
    Tools

    Get Citation

    Copy Citation Text

    Fei Wang, Haitao Huang, Haiwei Chen, Yushuo Bao, Zihan Li, Deyuan Shen, "GSA and ESA dual-wavelength pumped 2.3 μm Tm:YLF laser on the 3H43H5 transition," Chin. Opt. Lett. 19, 091405 (2021)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers, Optical Amplifiers, and Laser Optics

    Received: Jan. 15, 2021

    Accepted: Mar. 3, 2021

    Published Online: Jun. 15, 2021

    The Author Email: Haitao Huang (hht840211@163.com)

    DOI:10.3788/COL202119.091405

    Topics