Chinese Journal of Liquid Crystals and Displays, Volume. 40, Issue 6, 915(2025)

Small object detection algorithm in UAV aerial images based on improved YOLO11

Zhihao ZHANG, Xiaorun LI*, and Shuhan CHEN
Author Affiliations
  • College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
  • show less
    Figures & Tables(14)
    Structure of YOLO11 network
    Structure of ACFI-YOLO11 network
    Structure of ACFI module
    Structure of Tiny Head
    Illustration of SPD-Conv (s=2)
    Statistics of the VisDrone2021 dataset. (a) Class distribution; (b) Object size distribution.
    Samples from datasets
    Comparison of detection results on VisDrone2021. (a) YOLO11s; (b) ACFI-YOLO11.
    Detection results of ACFI-YOLO11 on UAVDT
    • Table 1. Parameters and FLOPs of YOLO11 series model

      View table
      View in Article

      Table 1. Parameters and FLOPs of YOLO11 series model

      ModelInput size/pixelsParams/MFLOPs/B
      YOLO11n6402.66.5
      YOLO11s6409.421.5
      YOLO11m64020.168.0
      YOLO11l64025.386.9
      YOLO11x64056.9194.9
    • Table 2. Ablation experiment results of our algorithm modules on the VisDrone2021-val set

      View table
      View in Article

      Table 2. Ablation experiment results of our algorithm modules on the VisDrone2021-val set

      BaselineTiny HeadACFISPD-ConvAPS/%APXS/%mAP50-95/%Params/MFLOPs/B
      16.98.427.79.421.6
      20.611.530.89.629.6
      17.38.828.318.533.7
      21.011.831.519.046.4
      21.111.931.718.042.5
    • Table 3. Comparison results of different models on VisDrone2021

      View table
      View in Article

      Table 3. Comparison results of different models on VisDrone2021

      ModelmAP50/%APS/%APXS/%mAP50-95/%Params/MFLOPs/B
      Faster R-CNN725.95.50.515.641.486.1
      Retinanet1016.11.40.49.436.578.1
      YOLOv5s43.616.98.026.09.124.1
      YOLOv8s44.716.68.527.49.823.6
      RT-DETR3140.913.56.324.432.8108.0
      YOLOv10s42.715.87.725.88.124.8
      YOLO11s45.116.98.427.79.421.6
      UAV-YOLOv83249.620.110.930.45.355.4
      HIC-YOLOv53347.517.910.228.49.331.2
      ARF-YOLOv83447.820.911.729.45.486.1
      ACFI-YOLO1150.321.111.931.718.042.5
    • Table 4. mAP50-95 and mAP50 of each category of objects on the validation set of VisDrone2021

      View table
      View in Article

      Table 4. mAP50-95 and mAP50 of each category of objects on the validation set of VisDrone2021

      ModelMetricsPedestrianPeopleBicycleCarVanTruckTricycleAwning-tricycleBusMotorAll
      YOLO11smAP50-95/%24.516.19.161.036.327.918.012.046.924.827.7
      mAP50/%51.139.719.783.750.441.531.618.661.852.645.1
      ACFI-YOLO11mAP50-95/%30.120.812.264.740.430.322.314.551.530.431.7
      mAP50/%59.347.525.487.154.444.336.622.166.660.050.3
    • Table 5. mAP50-95 of each category of objects on the validation set of VisDrone2021

      View table
      View in Article

      Table 5. mAP50-95 of each category of objects on the validation set of VisDrone2021

      ModelCarTruckBusAll
      RT-DETR69.074.079.774.2
      HIC-YOLOv573.376.480.176.6
      UAV-YOLOv878.682.486.282.4
      YOLO11s77.080.685.481.0
      ACFI-YOLO1179.583.387.083.3
    Tools

    Get Citation

    Copy Citation Text

    Zhihao ZHANG, Xiaorun LI, Shuhan CHEN. Small object detection algorithm in UAV aerial images based on improved YOLO11[J]. Chinese Journal of Liquid Crystals and Displays, 2025, 40(6): 915

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 10, 2025

    Accepted: --

    Published Online: Jul. 14, 2025

    The Author Email: Xiaorun LI (lxr@zju.edu.cn)

    DOI:10.37188/CJLCD.2025-0010

    Topics