Optics and Precision Engineering, Volume. 20, Issue 2, 422(2012)

Application of modified artificial bee colony algorithm to flatness error evaluation

LUO Jun*, WANG Qiang, and FU Li
Author Affiliations
  • [in Chinese]
  • show less
    References(18)

    [1] [1] WANG K. Application Guide of Form and Position Tolerance Standard [M]. Beijing: China Standard Press,1999: 341-359. (in Chinese)

    [2] [2] CUI CH C, LI B, HUANG F G, et al.. Genetic algorithm based from error evaluation[J]. Measurement Science and Technology, 2007,18(7): 1818-1822.

    [3] [3] LIAO P. Calculation of elliptic sphere form error based on genetic algorithm[J]. Chinese Journal of Scientific Instrument, 2009, 30(4): 780-785. (in Chinese)

    [4] [4] ZHANG K. Spatial straightness error evaluation with an ant colony algorithm[C]. Proceedings of the IEEE International Conference on Granular Computing (GRC 08), IEEE Press,2008: 793-796.

    [6] [6] WEN X L, HUANG J C, SHENG D H, et al.. Conicity and cylindricity error evaluation using particle swarm optimization[J]. Precision Engineering, 2010,34: 338-344.

    [7] [7] ZHANG Y M, ZUO CH CH, LIU Y,et al.. Evaluation method for axis straightness error based on artificial immune optimization algorithm[J]. Acta Metrologica Sinica, 2010,31(6): 490-493. (in Chinese)

    [8] [8] LUO J, LU J J, CHEN W M, et al.. Cylindricity error evaluation using artifical bee colony algorithm with tabu strategy[J]. Journal of Chongqing University, 2009,32(12): 1482-1485. (in Chinese)

    [9] [9] KARABOGA D, An idea based on honey bee swarm for numerical optimization[R]. Technical Report TR06, ErciyesUniversity, 2005.

    [10] [10] KARABOGA D,BASTURK B.On the performance of artificial bee colony(ABC) algorithm[J]. Applied Soft Computing, 2008, 8(1): 687-697.

    [11] [11] KARABOGA D, AKAY B. A comparative study of artificial bee colony algorithm[J]. Applied Mathematics and Computation, 2009, 214(1): 108-132.

    [12] [12] HUANG S T, FAN K C, WU J H. A new minimum zone method for evaluating flatness errors[J]. Precision Engineering, 1993, 15(1): 25-32.

    [13] [13] LIU P. Study on the convex and concave character of flatness error objective function[J]. Journal of Astronautic Metrology and Measurement, 2002,22(6): 14-17. (in Chinese)

    [14] [14] SAMUEL G L,SHUNMUGAM M S. Evaluation of straightness and flatness error using computational geometric techniques[J]. Computer-Aided Design, 1999, 31(3): 829-843.

    [15] [15] WEN X L, ZHAO Q.Flatness error evaluation based on evolutionary strategy[J]. Chinese Journal of Scientific Instrument, 2007, 28(5): 833-836. (in Chinese)

    [16] [16] WEBER T, MOTAVALL I S, FALLAHI B, et al.. A unified approach to form error evaluation[J]. Precision Engineering,2002,26(3): 269-278.

    [17] [17] CUI CH C, LI B, HUANG F G, et al.. Genetic algorithm based from error evaluation[J]. Measurement Science and Technology, 2007, 18(7): 1818-1822.

    [18] [18] CUI CH C, ZHANG G P, FU SH W, et al.. Particle swarm optimization-based flatness evaluation[J]. Journal of Huaqiao University(Natural Science), 2008, 29(4): 507-509. (in Chinese)

    CLP Journals

    [1] LU Ming-ming, CHEN Jian-zhong, ZHOU Jia-kang, LIN Jie-qiong, GU Yan. Application of improved artificial bee colony algorithm on chatter suppression in three-dimensional elliptical vibration cutting[J]. Optics and Precision Engineering, 2019, 27(4): 879

    [2] SHAN Ze-biao, SHI Yao-wu, LIU Xiao-song, ZHANG Zhi-cheng. DOA tracking of moving targets by artificial bee colony algorithm[J]. Optics and Precision Engineering, 2015, 23(3): 838

    [3] WANG Yu-chun, SUN He-yi, TANG Wen-yan, JIANG Chong-ran, TIAN Si-qing. Angle subdivision approach algorithm for conicoid profile error evaluation[J]. Optics and Precision Engineering, 2014, 22(6): 1606

    [4] ZHANG Zhi-cheng, LIN Jun, SHI Yao-wu, WANG Yong. Joint estimation of Dopplers and DOAs by WSF-QPSO method[J]. Optics and Precision Engineering, 2013, 21(9): 2445

    [5] YANG Jian, ZHAO Hong-yu. The research of floating-point codingimproved genetic algorithmin flatnesserror evaluation[J]. Optics and Precision Engineering, 2017, 25(3): 706

    [6] ZHANG Zhi-cheng, WEN Yan, SHI Yao-wu. Joint estimation of DOAs and Doppler frequency using isolation niche shuffled frog leaping algorithm[J]. Optics and Precision Engineering, 2014, 22(9): 2565

    [7] REN Zhi-ying, GAO Cheng-hui, SHEN Ding, LIN Jian-xing. Application of DT-CWT robust filtering to evaluation of engineering surface roughness[J]. Optics and Precision Engineering, 2014, 22(7): 1820

    [8] LI Yu-kang, WANG Yu-lin, HUANG Hai-hong. Application of improved differential evolution algorithm in flatness evaluation of large work-piece[J]. Optics and Precision Engineering, 2019, 27(12): 2659

    [9] LEI Xian-qing, LI Fei, TU Xian-ping, WANG Shi-feng. Geometry searching approximation algorithm for flatness error evaluation[J]. Optics and Precision Engineering, 2013, 21(5): 1312

    [10] WANG Yu-chun, SUN He-yi, TANG Wen-yan, JIANG Chong-ran, TIAN Si-qing. Angle subdivision approach algorithm for conicoid profile error evaluation[J]. Optics and Precision Engineering, 2014, 22(6): 1606

    Tools

    Get Citation

    Copy Citation Text

    LUO Jun, WANG Qiang, FU Li. Application of modified artificial bee colony algorithm to flatness error evaluation[J]. Optics and Precision Engineering, 2012, 20(2): 422

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 6, 2011

    Accepted: --

    Published Online: Mar. 6, 2012

    The Author Email: LUO Jun (luojun@cqu.edu.cn)

    DOI:10.3788/ope.20122002.0422

    Topics