Journal of Infrared and Millimeter Waves, Volume. 42, Issue 5, 622(2023)
Research progress of cavity magnon-polariton systems
[1] Baibich M N, Broto J M, Fert A et al. Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices[J]. Physical review letters, 61, 2472(1988).
[2] Xiao J Q, Jiang J S, Chien C L. Giant magnetoresistance in nonmultilayer magnetic systems[J]. Physical Review Letters, 68, 3749(1992).
[3] Xiong Z H, Wu D, Valy Vardeny Z et al. Giant magnetoresistance in organic spin-valves[J]. Nature, 427, 821-824(2004).
[4] Berkowitz A E, Mitchell J R, Carey M J et al. Giant magnetoresistance in heterogeneous Cu-Co alloys[J]. Physical Review Letters, 68, 3745(1992).
[5] Gui Y S, Mecking N, Zhou X et al. Realization of a room-temperature spin dynamo: the spin rectification effect[J]. Physical review letters, 98, 107602(2007).
[6] Harder M, Gui Y, Hu C M. Electrical detection of magnetization dynamics via spin rectification effects[J]. Physics Reports, 661, 1-59(2016).
[7] Mosendz O, Pearson J E, Fradin F Y et al. Quantifying spin Hall angles from spin pumping: Experiments and theory[J]. Physical review letters, 104, 046601(2010).
[8] Rojas-Sánchez J C, Reyren N, Laczkowski P et al. Spin pumping and inverse spin Hall effect in platinum: the essential role of spin-memory loss at metallic interfaces[J]. Physical review letters, 112, 106602(2014).
[9] Hirsch J E. Spin hall effect[J]. Physical review letters, 83, 1834(1999).
[10] Bernevig B A, Zhang S C. Quantum spin Hall effect[J]. Physical review letters, 96, 106802(2006).
[11] Kimura T, Otani Y, Sato T et al. Room-temperature reversible spin Hall effect[J]. Physical review letters, 98, 156601(2007).
[12] Zhou C, Shen L, Liu M et al. Long‐Range Nonvolatile Electric Field Effect in Epitaxial Fe/Pb (Mg1/3Nb2/3) 0.7 Ti0. 3O3 Heterostructures[J]. Advanced Functional Materials, 28, 1707027(2018).
[13] Zhou C, Shen L, Liu M et al. Strong nonvolatile magnon-driven magnetoelectric coupling in single-crystal Co/[PbMg 1/3 Nb 2/3 O 3] 0.71 [PbTiO 3] 0.29 heterostructures[J]. Physical Review Applied, 9, 014006(2018).
[14] Zhang Q, Sun Y, Lu Z et al. Zero-field magnon–photon coupling in antiferromagnet CrCl3[J]. Applied Physics Letters, 119(2021).
[15] Tabuchi Y, Ishino S, Noguchi A et al. Coherent coupling between a ferromagnetic magnon and a superconducting qubit[J]. Science, 349, 405-408(2015).
[16] Wang Z, Yuan H Y, Cao Y et al. Magnonic frequency comb through nonlinear magnon-skyrmion scattering[J]. Physical Review Letters, 127, 037202(2021).
[17] Moore G E. Gramming more components onto integrated circuits[J]. Electronics, 38, 8(1965).
[18] Steane A. Quantum computing[J]. Reports on Progress in Physics, 61, 117(1998).
[19] Gruska J[M]. Quantum computing(1999).
[20] Nielsen M A, Chuang I L[M]. Quantum computation and quantum information(2010).
[21] Bennett C H, DiVincenzo D P. Quantum information and computation[J]. nature, 404, 247-255(2000).
[22] Feynman R P. Keynote talk, First Conference on Physics and Computation, MIT, 1981[J]. International Journal of Theoretical Physics, 21, 467(1982).
[23] Aspuru-Guzik A, Dutoi A D, Love P J et al. Simulated quantum computation of molecular energies[J]. Science, 309, 1704-1707(2005).
[24] Cirac J I, Zoller P. Goals and opportunities in quantum simulation[J]. Nature physics, 8, 264-266(2012).
[25] Degen C L, Reinhard F, Cappellaro P. Quantum sensing[J]. Reviews of modern physics, 89, 035002(2017).
[26] Duan L M, Lukin M D, Cirac J I et al. Long-distance quantum communication with atomic ensembles and linear optics[J]. Nature, 414, 413-418(2001).
[27] Kimble H J. The quantum internet[J]. Nature, 453, 1023-1030(2008).
[28] Kurizki G, Bertet P, Kubo Y et al. Quantum technologies with hybrid systems[J]. Proceedings of the National Academy of Sciences, 112, 3866-3873(2015).
[29] Clerk A A, Lehnert K W, Bertet P et al. Hybrid quantum systems with circuit quantum electrodynamics[J]. Nature Physics, 16, 257-267(2020).
[30] Lachance-Quirion D, Tabuchi Y, Gloppe A et al. Hybrid quantum systems based on magnonics[J]. Applied Physics Express, 12, 070101(2019).
[31] Van Loo A F, Fedorov A, Lalumiere K et al. Photon-mediated interactions between distant artificial atoms[J]. Science, 342, 1494-1496(2013).
[32] Kurs A, Karalis A, Moffatt R et al. Wireless power transfer via strongly coupled magnetic resonances[J]. science, 317, 83-86(2007).
[33] Karg T M, Gouraud B, Ngai C T et al. Light-mediated strong coupling between a mechanical oscillator and atomic spins 1 meter apart[J]. Science, 369, 174-179(2020).
[34] Zhong H, Wen Y, Zhao Y et al. Ten states of nonvolatile memory through engineering ferromagnetic remanent magnetization[J]. Advanced Functional Materials, 29, 1806460(2019).
[35] Nanotechnology N. Memory with a spin[J]. Nature Nanotechnology, 10, 185(2015).
[36] Julsgaard B, Grezes C, Bertet P et al. Quantum memory for microwave photons in an inhomogeneously broadened spin ensemble[J]. Physical review letters, 110, 250503(2013).
[37] Hennessy K, Badolato A, Winger M et al. Quantum nature of a strongly coupled single quantum dot–cavity system[J]. Nature, 445, 896-899(2007).
[38] Gaebel T, Domhan M, Popa I et al. Room-temperature coherent coupling of single spins in diamond[J]. Nature Physics, 2, 408-413(2006).
[39] Teufel J D, Li D, Allman M S et al. Circuit cavity electromechanics in the strong-coupling regime[J]. Nature, 471, 204-208(2011).
[40] Purcell E M, Torrey H C, Pound R V. Resonance absorption by nuclear magnetic moments in a solid[J]. Physical review, 69, 37(1946).
[41] Berman P R. Cavity quantum electrodynamics[J](1994).
[42] Blais A, Huang R S, Wallraff A et al. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation[J]. Physical Review A, 69, 062320(2004).
[43] Walther H, Varcoe B T H, Englert B G et al. Cavity quantum electrodynamics[J]. Reports on Progress in Physics, 69, 1325(2006).
[44] Soykal Ö O, Flatté M E. Strong field interactions between a nanomagnet and a photonic cavity[J]. Physical review letters, 104, 077202(2010).
[45] Huebl H, Zollitsch C W, Lotze J et al. High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids[J]. Physical Review Letters, 111, 127003(2013).
[46] Tabuchi Y, Ishino S, Ishikawa T et al. Hybridizing ferromagnetic magnons and microwave photons in the quantum limit[J]. Physical review letters, 113, 083603(2014).
[47] Tabuchi Y, Ishino S, Noguchi A et al. Coherent coupling between a ferromagnetic magnon and a superconducting qubit[J]. Science, 349, 405-408(2015).
[48] Bai L, Harder M, Chen Y P et al. Spin pumping in electrodynamically coupled magnon-photon systems[J]. Physical Review Letters, 114, 227201(2015).
[49] Zhang X, Van Hulzen M, Singh D P et al. Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling[J]. Nature communications, 6, 1-7(2015).
[50] Bai L, Harder M, Hyde P et al. Cavity mediated manipulation of distant spin currents using a cavity-magnon-polariton[J]. Physical review letters, 118, 217201(2017).
[51] Lachance-Quirion D, Tabuchi Y, Ishino S et al. Resolving quanta of collective spin excitations in a millimeter-sized ferromagnet[J]. Science Advances, 3, e1603150(2017).
[52] Rao J W, Kaur S, Yao B M et al. Analogue of dynamic Hall effect in cavity magnon polariton system and coherently controlled logic device[J]. Nature Communications, 10, 2934(2019).
[53] Bai L, Harder M, Hyde P et al. Cavity mediated manipulation of distant spin currents using a cavity-magnon-polariton[J]. Physical review letters, 118, 217201(2017).
[54] Wang Y P, Zhang G Q, Zhang D et al. Bistability of cavity magnon polaritons[J]. Physical review letters, 120, 057202(2018).
[55] Wang Z, Yuan H Y, Cao Y et al. Twisted magnon frequency comb and Penrose superradiance[J]. Physical Review Letters, 129, 107203(2022).
[56] Rao J W, Yao B, Wang C Y et al. Unveiling a pump-induced magnon mode via its strong interaction with walker modes[J]. Physical Review Letters, 130, 046705(2023).
[57] Yao B, Gui Y S, Rao J W et al. Coherent microwave emission of gain-driven polaritons[J]. Physical Review Letters, 130, 146702(2023).
[58] Bi M X, Yan X H, Zhang Y et al. Tristability of cavity magnon polaritons[J]. Physical Review B, 103, 104411(2021).
[59] Zhang D, Luo X Q, Wang Y P et al. Observation of the exceptional point in cavity magnon-polaritons[J]. Nature communications, 8, 1368(2017).
[60] Zhang X, Ding K, Zhou X et al. Experimental observation of an exceptional surface in synthetic dimensions with magnon polaritons[J]. Physical review letters, 123, 237202(2019).
[61] Cao Y, Yan P. Exceptional magnetic sensitivity of P T-symmetric cavity magnon polaritons[J]. Physical Review B, 99, 214415(2019).
[62] Rameshti B Z, Bauer G E W. Indirect coupling of magnons by cavity photons[J]. Physical Review B, 97, 014419(2018).
[63] Lambert N J, Haigh J A, Ferguson A J. Identification of spin wave modes in yttrium iron garnet strongly coupled to a co-axial cavity[J]. Journal of Applied Physics, 117(2015).
[64] Yao B, Cheng Y, Wang Z et al. DNA N6-methyladenine is dynamically regulated in the mouse brain following environmental stress[J]. Nature communications, 8, 1122(2017).
[65] Osada A, Hisatomi R, Noguchi A et al. Cavity optomagnonics with spin-orbit coupled photons[J]. Physical review letters, 116, 223601(2016).
[66] Kusminskiy S V, Tang H X, Marquardt F. Coupled spin-light dynamics in cavity optomagnonics[J]. Physical Review A, 94, 033821(2016).
[67] Kusminskiy S V. Cavity optomagnonics[M]. Optomagnonic Structures: Novel Architectures for Simultaneous Control of Light and Spin Waves, 299-353(2021).
[68] Zhang X, Zou C L, Jiang L et al. Science Advances 2, e1501286 (2016)[J].
[69] Li J, Zhu S Y, Agarwal G S. Magnon-photon-phonon entanglement in cavity magnomechanics[J]. Physical review letters, 121, 203601(2018).
[70] Zhang X, Zou C L, Jiang L et al. Strongly coupled magnons and cavity microwave photons[J]. Physical review letters, 113, 156401(2014).
[71] Yao B M, Gui Y S, Xiao Y et al. Theory and experiment on cavity magnon-polariton in the one-dimensional configuration[J]. Physical Review B, 92, 184407(2015).
[72] Yao B, Gui Y S, Rao J W et al. Cooperative polariton dynamics in feedback-coupled cavities[J]. Nature communications, 8, 1437(2017).
[73] Kaur S, Yao B M, Rao J W et al. Voltage control of cavity magnon polariton[J]. Applied Physics Letters, 109(2016).
[74] Rao J W, Yao B M, Fan X L et al. Electric control of cooperative polariton dynamics in a cavity-magnon system[J]. Applied Physics Letters, 112(2018).
[75] Yao B, Yu T, Gui Y S et al. Coherent control of magnon radiative damping with local photon states[J]. Communications Physics, 2, 161(2019).
[76] Grigoryan V L, Shen K, Xia K. Synchronized spin-photon coupling in a microwave cavity[J]. Physical Review B, 98, 024406(2018).
[77] Harder M., Yang Y., Yao B.M., Yu C.H., Rao J.W., Gui Y.S., Stamps R.L., Hu C.-M.. Physical Review Letters121, 137203(2018).
[78] Bernier N R, Tóth L D, Feofanov A K et al. Level attraction in a microwave optomechanical circuit[J]. Physical Review A, 98, 023841(2018).
[79] Wang Y P, Rao J W, Yang Y et al. Nonreciprocity and unidirectional invisibility in cavity magnonics[J]. Physical review letters, 123, 127202(2019).
[80] Yu W, Yu T, Bauer G E W. Circulating cavity magnon polaritons[J]. Physical Review B, 102, 064416(2020).
[81] Yu T, Zhang Y X, Sharma S et al. Magnon accumulation in chirally coupled magnets[J]. Physical review letters, 124, 107202(2020).
[82] Qian J, Rao J W, Gui Y S et al. Manipulation of the zero-damping conditions and unidirectional invisibility in cavity magnonics[J]. Applied Physics Letters, 116(2020).
[83] Rao J W, Kaur S, Yao B M et al. Analogue of dynamic Hall effect in cavity magnon polariton system and coherently controlled logic device[J]. Nature Communications, 10, 2934(2019).
[84] Amo A, Liew T C H, Adrados C et al. Exciton–polariton spin switches[J]. Nature Photonics, 4, 361-366(2010).
[85] Rao J W, Xu P C, Gui Y S et al. Interferometric control of magnon-induced nearly perfect absorption in cavity magnonics[J]. Nature communications, 12, 1933(2021).
[86] Hu W, Ye Z, Liao L et al. 128× 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk[J]. Optics Letters, 39, 5184-5187(2014).
[87] Hu W D, Chen X S, Ye Z H et al. A hybrid surface passivation on HgCdTe long wave infrared detector with in-situ CdTe deposition and high-density hydrogen plasma modification[J]. Applied Physics Letters, 99(2011).
Get Citation
Copy Citation Text
Chun-Ke WEI, Jin-Wei RAO, Bi-Mu YAO. Research progress of cavity magnon-polariton systems[J]. Journal of Infrared and Millimeter Waves, 2023, 42(5): 622
Category: Research Articles
Received: Apr. 6, 2023
Accepted: --
Published Online: Aug. 30, 2023
The Author Email: Jin-Wei RAO (raojw@shanghaitech.edu.cn), Bi-Mu YAO (yaobimu@mail.sitp.ac.cn)