Journal of Quantum Optics, Volume. 27, Issue 2, 102(2021)
Precision Measurement Enhancement Based on Noiseless Linear Amplification
[1] [1] Giovannetti V, Lloyd S, Maccone L. Quantum metrology[J]. Physical Review Letters, 2006, 96(1): 010401. DOI: https://doi.org/10.1103/PhysRevLett.96.010401.
[2] [2] Nagourney W. Quantum electronics for atomic physics (Oxford Graduate Texts)[M]. 1st ed. Oxford University Press, 2010. ISBN: 0199532621,9780199532629.
[3] [3] Zhang H, Ye W, Wei C, et al. Improved phase sensitivity in a quantum optical interferometer based on multiphoton catalytic two-mode squeezed vacuum states[J]. Physical Review A, 2021, 103(1): 013705. DOI: 10.1103/PhysRevA.103.013705.
[4] [4] Anisimov P M, Raterman G M, Chiruvelli A, et al. Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit[J]. Physical Review Letters, 2010, 104(10): 103602. DOI: 10.1103/PhysRevLett.104.103602.
[5] [5] Ralph T C, Lund A P. Quantum Communication Measurement and Computing Proceedings of 9th International Conference[C]. AIP, New York, 2009. 155-160. DOI: 10.1063/1.3131295.
[6] [6] Winnel M S, Hosseinidehaj N, Ralph T C. Generalized quantum scissors for noiseless linear amplification[J]. Physical Review A, 2020, 102(6): 063715. DOI: 10.1103/PhysRevA.102.063715.
[7] [7] Xiang G Y, Ralph T C, Lund A P, et al. Heralded noiseless linear amplification and distillation of entanglement[J]. Nature Photonics, 2010, 4(5): 316-319. DOI: 10.1038/nphoton.2010.35.
[8] [8] Ferreyrol F, Barbieri M, Blandino R, et al. Implementation of a nondeterministic optical noiseless amplifier[J]. Physical Review Letters, 2010, 104(12): 123603. DOI: 10.1103/PhysRevLett.104.123603.
[9] [9] Fiuráek J. Engineering quantum operations on traveling light beams by multiple photon addition and subtraction[J]. Physical Review A, 2012, 80(5): 11714-11722. DOI: 10.1103/PhysRevA.80.053822.
[10] [10] Zavatta A, Fiuráek J, Bellini M. A high-fidelity noiseless amplifier for quantum light states[J]. Nature Photonics, 2011, 5(1): 52. DOI: 10.1038/NPHOTON.2010.2603.
[11] [11] Ulanov A E, Fedorov I A, Pushkina A A, et al. Undoing the effect of loss on quantum entanglement[J]. Nature Photonics, 2015, 9(11): 764-768. DOI: 10.1038/nphoton.2015.195.
[12] [12] He M, Malaney R, Burnett B A. Noiseless linear amplifiers for multimode states[J]. Physical Review A, 2021, 103(1): 012414. DOI: 10.1103/PhysRevA.103.012414.
[13] [13] Zhao J, Dias J, Haw J Y, et al. Quantum enhancement of signal-to-noise ratio with a heralded linear amplifier[J]. Optica, 2017, 4(11): 1421-1428. DOI: 10.1364/OPTICA.4.001421.
[14] [14] Zhao J, Haw J Y, Symul T, et al. Characterization of a measurement-based noiseless linear amplifier and its applications[J]. Physical Review A, 2017, 96(1): 012319. DOI: 10.1103/PhysRevA.96.012319.
[15] [15] Zhao J. Post-selection-based continuous variable quantum information processing[D]. The Australian National University, 2019.
Get Citation
Copy Citation Text
LI Wen-kui, LI Zhi, GUO Hui, LIU Kui. Precision Measurement Enhancement Based on Noiseless Linear Amplification[J]. Journal of Quantum Optics, 2021, 27(2): 102
Category:
Received: Mar. 5, 2021
Accepted: --
Published Online: Sep. 13, 2021
The Author Email: LIU Kui (liukui@sxu.edu.cn)