Optical Communication Technology, Volume. 49, Issue 3, 16(2025)
Progress in machine learning research for improving FSO channel estimation
[1] [1] GUEYE I, DIOP I, DIOUM I, et al. Cooperative systems in optical wireless communication: a survey[J]. Journal of Theoretical and Applied Information Technology, 2020, 98(11): 1901-1916.
[2] [2] KASHANI M A, UYSAL M, KAVEHRAD M. A novel statistical channel model for turbulence-induced fading in free-space optical systems[J]. Journal of Lightwave Technology, 2015, 33(11): 2303-2312.
[3] [3] SANDALIDIS H G, TSIFTSIS T A, KARAGIANNIDIS G K, et al. BER performance of FSO links over strong atmospheric turbulence channels with pointing errors[J]. IEEE Communications Letters, 2008, 12(1): 44-46.
[4] [4] PEPPAS K P, LAZARAKIS F, ALEXANDRIDIS A, et al. Simple, accurate formula for the average bit error probability of multiple-input multiple-output free-space optical links over negative exponential turbulence channels[J]. Optics Letters, 2012, 37(15): 3243-3245.
[5] [5] ODEYEMI K O, OWOLAWI P A, SRIVASTAVA V M. Performance analysis of free space optical system with spatial modulation and diversity combiners over the Gamma Gamma atmospheric turbulence[J]. Optics Communications, 2017, 382: 205-211.
[6] [6] ZENG Y, NG T S. A semi-blind channel estimation method for multiuser multiantenna OFDM systems [J]. IEEE Transactions on Signal Processing, 2004, 52(5): 1419-1429.
[8] [8] DARWESH L, ARNON S. Deep learning for free space optics in a data center environment[C]//Laser Communication and Propagation Through the Atmosphere and Oceans VII. September 18, 2018, San Diego, United States. Washington: SPIE, 2018: 24-32.
[9] [9] AMIRABADI M A, KAHAEI M H, NEZAMALHOSSEINI S A, et al. Deep learning for channel estimation in FSO communication system[J]. Optics Communications, 2020, 459: 1-7.
[10] [10] CHEN W, ZHANG M, WANG D, et al. Deep learning-based channel modeling for free space optical communications [J]. Journal of Lightwave Technology, 2022, 41(1): 183-198.
[11] [11] NDIAYE P, SOW A, DIOP M, et al. Free space optical channel estimation based on deep learning algorithms[C]//2023 International Workshop on Fiber Optics on Access Networks(FOAN), October 30-31, 2023, Gent, Belgium. Piscataway: IEEE, 2023: 27-31.
[12] [12] ELFIKKY A, REZKI Z. Symbol detection and channel estimation for space optical communications using neural network and autoencoder [J]. IEEE Transactions on Machine Learning in Communications and Networking, 2024, 2: 110-128.
[13] [13] CHEN D, WANG R, WANG C, et al. Joint estimation model for FSO channel parameters and performance evaluation based on CNNs[J]. Applied Optics, 2024, 63(9): 2156-2166.
[14] [14] MISHRA P, SONALI, DIXIT A, et al. Machine learning techniques for channel estimation in free space optical communication systems[C]//2019 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), December 16-19, 2019, Goa, India. Piscataway: IEEE, 2019: 1-6.
[15] [15] AVETA F, REFAI H H, LOPRESTI P G. Cognitive multi-point free space optical communication: real-time users discovery using unsupervised machine learning[J]. IEEE Access, 2020, 8: 207575-207588.
[16] [16] AVETA F, ALGEDIR A, REFAI H. Quality of transmission estimation for multi-user free space optical communication using supervised machine learning[C]//2021 IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW), June 21-23, 2021, Cleveland, USA. Piscataway: IEEE, 2021: 1-5.
[17] [17] LIONIS A, PEPPAS K, NISTAZAKIS H E, et al. Using machine learning algorithms for accurate received optical power prediction of an FSO link over a maritime environment[J]. Photonics, 2021, 8(6): 1-17.
[18] [18] KAUR S, KAUR J, SHARMA A. Predicting the performance of radio over free space optics system using machine learning techniques[J]. Optik, 2023, 281: 1-17.
Get Citation
Copy Citation Text
ZHANG Yanlu, WANG Anrong, SHAO Yufeng, ZHU Yaodong, LIU Hainan, CHEN Chao, HU Wenguang, LI Wenchen. Progress in machine learning research for improving FSO channel estimation[J]. Optical Communication Technology, 2025, 49(3): 16
Special Issue:
Received: Aug. 21, 2024
Accepted: Jun. 27, 2025
Published Online: Jun. 27, 2025
The Author Email: