Photonics Research, Volume. 9, Issue 8, 1559(2021)

Water-stable CsPbBr3 perovskite quantum-dot luminous fibers fabricated by centrifugal spinning for dual white light illumination and communication

Binhai Yu1, Shunming Liang1, Fengyi Zhang1, Zongtao Li1,2, Bin Liu3, and Xinrui Ding1、*
Author Affiliations
  • 1National and Local Joint Engineering Research Center of Semiconductor Display and Optical Communication Devices, South China University of Technology, Guangzhou 510641, China
  • 2Provincial Key Laboratory of Semiconductor Micro Display, Foshan Nationstar Optoelectronics Company Ltd., Foshan 528000, China
  • 3Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China
  • show less
    References(60)

    [1] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett., 15, 3692-3696(2015).

    [2] M. V. Kovalenko, L. Protesescu, M. I. Bodnarchuk. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science, 358, 745-750(2017).

    [3] X. Gong, M. Li, X. B. Shi, H. Ma, Z. K. Wang, L. S. Liao. Controllable perovskite crystallization by water additive for high-performance solar cells. Adv. Funct. Mater., 25, 6671-6678(2015).

    [4] J. Z. Song, J. H. Li, X. M. Li, L. M. Xu, Y. H. Dong, H. B. Zeng. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater., 27, 7162-7167(2015).

    [5] Z. T. Li, K. Cao, J. S. Li, X. W. Du, Y. Tang, B. H. Yu. Modification of interface between PEDOT:PSS and perovskite film inserting an ultrathin LiF layer for enhancing efficiency of perovskite light-emitting diodes. Org. Electron., 81, 105675(2020).

    [6] H. M. Zhu, Y. P. Fu, F. Meng, X. X. Wu, Z. Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, X. Y. Zhu. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater., 14, 636-642(2015).

    [7] S. F. Leung, K. T. Ho, P. K. Kung, V. K. S. Hsiao, H. N. Alshareef, Z. L. Wang, J. H. He. A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity. Adv. Mater., 30, 1704611(2018).

    [8] R. H. Liu, J. Q. Zhang, H. Zhou, Z. H. Song, Z. N. Song, C. R. Grice, D. J. Wu, L. P. Shen, H. Wang. Solution-processed high-quality cesium lead bromine perovskite photodetectors with high detectivity for application in visible light communication. Adv. Opt. Mater., 8, 1901735(2020).

    [9] N. Strobel, N. Droseros, W. Kontges, M. Seiberlich, M. Pietsch, S. Schlisske, F. Lindheimer, R. R. Schroder, U. Lemmer, M. Pfannmoller, N. Banerji, G. Hernandez-Sosa. Color-selective printed organic photodiodes for filterless multichannel visible light communication. Adv. Mater., 32, 1908258(2020).

    [10] W. H. Li, S. B. Li, L. Duan, H. J. Chen, L. D. Wang, G. F. Dong, Z. Y. Xu. Squarylium and rubrene based filterless narrowband photodetectors for an all-organic two-channel visible light communication system. Org. Electron., 37, 346-351(2016).

    [11] E. Lopez-Fraguas, B. Arredondo, C. Vega-Colado, G. del Pozo, M. Najafi, D. Martin-Martin, Y. Galagan, J. M. Sanchez-Pena, R. Vergaz, B. Romero. Visible light communication system using an organic emitter and a perovskite photodetector. Org. Electron., 73, 292-298(2019).

    [12] Y. Tong, E. Bladt, M. F. Ayguler, A. Manzi, K. Z. Milowska, V. A. Hintermayr, P. Docampo, S. Bals, A. S. Urban, L. Polavarapu, J. Feldmann. Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew. Chem., 55, 13887-13892(2016).

    [13] S. L. Mei, X. Y. Liu, W. L. Zhang, R. Liu, L. R. Zheng, R. Q. Guo, P. F. Tian. High-bandwidth white-light system combining a micro-LED with perovskite quantum dots for visible light communication. ACS Appl. Mater. Interfaces, 10, 5641-5648(2018).

    [14] S. Jung, J. H. Kim, J. W. Choi, J. W. Kang, S. H. Jin, Y. Kang, M. Song. Enhancement of photoluminescence quantum yield and stability in CsPbBr3 perovskite quantum dots by trivalent doping. Nanomaterials, 10, 710(2020).

    [15] S. L. Mei, B. B. Yang, X. Wei, H. Q. Dai, Z. H. Chen, Z. J. Cui, G. L. Zhang, F. X. Xie, W. L. Zhang, R. Q. Guo. Facile synthesis and optical properties of CsPbX3/ZIF-8 composites for wide-color-gamut display. Nanomaterials, 9, 832(2019).

    [16] Z. T. Li, X. T. Tang, J. D. Yu, Y. Tang, B. H. Yu, Y. L. Hu, B. Liu, X. R. Ding. Lifetime enhancement of a circulated cooling perovskite quantum dots colloidal solution system for laser illuminations. IEEE Access, 7, 136214-136222(2019).

    [17] I. Dursun, C. Shen, M. R. Parida, J. Pan, S. P. Sarmah, D. Priante, N. Alyami, J. Liu, M. I. Saidaminov, M. S. Alias, A. L. Abdelhady, T. K. Ng, O. F. Mohammed, B. S. Ooi, O. M. Bakr. Perovskite nanocrystals as a color converter for visible light communication. ACS Photon., 3, 1150-1156(2016).

    [18] C. H. Lin, C. Y. Kang, A. Verma, T. Z. Wu, Y. M. Pai, T. Y. Chen, C. L. Tsai, Y. Z. Yang, S. K. Sharma, C. W. Sher, Z. Chen, P. T. Lee, S. R. Chung, H. C. Kuo. Ultrawide color gamut perovskite and CdSe/ZnS quantum-dots-based white light-emitting diode with high luminous efficiency. Nanomaterials, 9, 1314(2019).

    [19] H. Huang, M. I. Bodnarchuk, S. V. Kershaw, M. V. Kovalenko, A. L. Rogach. Lead halide perovskite nanocrystals in the research spotlight: stability and defect tolerance. ACS Energy Lett., 2, 2071-2083(2017).

    [20] B. Hailegnaw, S. Kirmayer, E. Edri, G. Hodes, D. Cahen. Rain on methylammonium lead iodide based perovskites: possible environmental effects of perovskite solar cells. J. Phys. Chem. Lett., 6, 1543-1547(2015).

    [21] Z. T. Li, C. J. Song, J. S. Li, G. W. Liang, L. S. Rao, S. D. Yu, X. R. Ding, Y. Tang, B. H. Yu, J. Z. Ou, U. Lemmer, G. Gomard. Highly efficient and water-stable lead halide perovskite quantum dots using superhydrophobic aerogel inorganic matrix for white light-emitting diodes. Adv. Mater. Technol., 5, 1900941(2020).

    [22] J. S. Li, Y. Tang, Z. T. Li, X. R. Ding, B. H. Yu, L. W. Lin. Largely enhancing luminous efficacy, color-conversion efficiency, and stability for quantum-dot white LEDs using the two-dimensional hexagonal pore structure of SBA-15 mesoporous particles. ACS Appl. Mater. Interfaces, 11, 18808-18816(2019).

    [23] Y. T. J.-S. Li, Z.-T. Li, J.-X. Li, X.-R. Ding, B.-H. Yu, S.-D. Yu, J.-Z. Ou, H.-C. Kuo. Toward 200 lumens per watt of quantum-dot white-light-emitting diodes by reducing reabsorption loss. ACS Nano, 15, 550-562(2021).

    [24] Y. Wei, X. R. Deng, Z. X. Xie, X. C. Cai, S. S. Liang, P. Ma, Z. Y. Hou, Z. Y. Cheng, J. Lin. Enhancing the stability of perovskite quantum dots by encapsulation in crosslinked polystyrene beads via a swelling-shrinking strategy toward superior water resistance. Adv. Funct. Mater., 27, 1703535(2017).

    [25] P. G. Papagiorgis, A. Manoli, A. Alexiou, P. Karacosta, X. Karagiorgis, G. Papaparaskeva, C. Bernasconi, M. I. Bodnarchuk, M. V. Kovalenko, T. Krasia-Christoforou, G. Itskos. Robust hydrophobic and hydrophilic polymer fibers sensitized by inorganic and hybrid lead halide perovskite nanocrystal emitters. Front. Chem., 7, 87(2019).

    [26] L. H. Meng, C. G. Yang, J. J. Meng, Y. Z. Wang, Y. Ge, Z. Q. Shao, G. F. Zhang, A. L. Rogach, H. Z. Zhong. In-situ fabricated anisotropic halide perovskite nanocrystals in polyvinylalcohol nanofibers: shape tuning and polarized emission. Nano Res., 12, 1411-1416(2019).

    [27] H. Liao, S. B. Guo, S. Cao, L. Wang, F. M. Gao, Z. B. Yang, J. J. Zheng, W. Y. Yang. A general strategy for in situ growth of all-inorganic CsPbX3 (X = Br, I, and Cl) perovskite nanocrystals in polymer fibers toward significantly enhanced water/thermal stabilities. Adv. Opt. Mater., 6, 1800346(2018).

    [28] H. H. Zhang, D. F. Fu, Z. T. Du, H. Fu, G. Shao, W. Y. Yang, J. J. Zheng. In situ growth of aligned CsPbBr3 nanorods in polymer fibers with tailored aspect ratios. Ceram. Int., 46, 18352-18357(2020).

    [29] D. H. Jiang, S. Kobayashi, C. C. Jao, Y. Mato, T. Isono, Y. H. Fang, C. C. Lin, T. Satoh, S. H. Tung, C. C. Kuo. Light down-converter based on luminescent nanofibers from the blending of conjugated rod-coil block copolymers and perovskite through electrospinning. Polymers, 12, 84(2020).

    [30] X. Lu, Y. Hu, J. Z. Guo, C. F. Wang, S. Chen. Fiber-spinning-chemistry method toward in situ generation of highly stable halide perovskite nanocrystals. Adv. Sci., 6, 1901694(2019).

    [31] T. T. Cui, Z. J. Zhu, R. Cheng, Y. L. Tong, G. Peng, C. F. Wang, S. Chen. Facile access to wearable device via microfluidic spinning of robust and aligned fluorescent microfibers. ACS Appl. Mater. Interfaces, 10, 30785-30793(2018).

    [32] L. Y. Ron, S. P. Kotha. Centrifugal jet spinning for highly efficient and large-scale fabrication of barium titanate nanofibers. Mater. Lett., 117, 153-157(2014).

    [33] L. K. Hromadko, E. Koudelkova, R. Bulanek, J. M. Macak. SiO2 fibers by centrifugal spinning with excellent textural properties and water adsorption performance. ACS Omega, 2, 5052-5059(2017).

    [34] M. R. Badrossamay, H. A. McIlwee, J. A. Goss, K. K. Parker. Nanofiber assembly by rotary jet-spinning. Nano Lett., 10, 2257-2261(2010).

    [35] A. Barhoum, K. Pal, H. Rahier, H. Uludag, I. S. Kim, M. Bechelany. Nanofibers as new-generation materials: from spinning and nano-spinning fabrication techniques to emerging applications. Appl. Mater. Today, 17, 1-35(2019).

    [36] E. Ercan, P.-C. Tsai, J.-Y. Chen, J.-Y. Lam, L.-C. Hsu, C.-C. Chueh, W.-C. Chen. Stretchable and ambient stable perovskite/polymer luminous hybrid nanofibers of multicolor fiber mats and their white LED applications. ACS Appl. Mater. Interfaces, 11, 23605-23615(2019).

    [37] B. H. L. Yu, S. Liang, X. Ding, Z. Li, Y. Tang. A sandwich structure light-trapping fluorescence antenna with large field of view for visible light communication. IEEE Trans. Electron Dev., 68, 565-571(2021).

    [38] A. Loiudice, S. Saris, E. Oveisi, D. T. L. Alexander, R. Buonsanti. CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light, and heat. Angew. Chem., 56, 10696-10701(2017).

    [39] L. S. Rao, Y. Tang, C. J. Song, K. Xu, E. T. Vickers, S. B. Naghadeh, X. R. Ding, Z. T. Li, J. Z. Zhang. Polar-solvent-free synthesis of highly photoluminescent and stable CsPbBr3 nanocrystals with controlled shape and size by ultrasonication. Chem. Mater., 31, 365-375(2019).

    [40] V. S. Chirvony, S. Gonzalez-Carrero, I. Suarez, R. E. Galian, M. Sessolo, H. J. Bolink, J. P. Martinez-Pastor, J. Perez-Prieto. Delayed luminescence in lead halide perovskite nanocrystals. J. Phys. Chem. C, 121, 13381-13390(2017).

    [41] V. Malgras, J. Henzie, T. Takei, Y. Yamauchi. Stable blue luminescent CsPbBr3 perovskite nanocrystals confined in mesoporous thin films. Angew. Chem., 57, 8881-8885(2018).

    [42] S. N. Raja, Y. Bekenstein, M. A. Koc, S. Fischer, D. Zhang, L. Lin, R. O. Ritchie, P. Yang, A. P. Alivisatos. Encapsulation of perovskite nanocrystals into macroscale polymer matrices: enhanced stability and polarization. ACS Appl. Mater. Interfaces, 8, 35523-35533(2016).

    [43] Y. Wei, Z. Y. Cheng, J. Lin. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem. Soc. Rev., 48, 310-350(2019).

    [44] S. Huang, Z. Li, B. Wang, N. Zhu, C. Zhang, L. Kong, Q. Zhang, A. Shan, L. Li. Morphology evolution and degradation of CsPbBr3 nanocrystals under blue light-emitting diode illumination. ACS Appl. Mater. Interfaces, 9, 7249-7258(2017).

    [45] J. B. You, Y. M. Yang, Z. R. Hong, T. B. Song, L. Meng, Y. S. Liu, C. Y. Jiang, H. P. Zhou, W. H. Chang, G. Li, Y. Yang. Moisture assisted perovskite film growth for high performance solar cells. Appl. Phys. Lett., 105, 183902(2014).

    [46] Y. Liu, F. Li, Q. Liu, Z. Xia. Synergetic effect of postsynthetic water treatment on the enhanced photoluminescence and stability of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals. Chem. Mater., 30, 6922-6929(2018).

    [47] L. Wu, H. Hu, Y. Xu, S. Jiang, M. Chen, Q. Zhong, D. Yang, Q. Liu, Y. Zhao, B. Sun, Q. Zhang, Y. Yin. From nonluminescent Cs4PbX6 (X = Cl, Br, I) nanocrystals to highly luminescent CsPbX3 nanocrystals: water-triggered transformation through a CsX-stripping mechanism. Nano Lett., 17, 5799-5804(2017).

    [48] Z. Liu, Y. Bekenstein, X. Ye, S. C. Nguyen, J. Swabeck, D. Zhang, S.-T. Lee, P. Yang, W. Ma, A. P. Alivisatos. Ligand mediated transformation of cesium lead bromide perovskite nanocrystals to lead depleted Cs4PbBr6 nanocrystals. J. Am. Chem. Soc., 139, 5309-5312(2017).

    [49] Y. N. Chen, M. H. He, J. J. Peng, Y. Sun, Z. Q. Liang. Structure and growth control of organic-inorganic halide perovskites for optoelectronics: from polycrystalline films to single crystals. Adv. Sci., 3, 1500392(2016).

    [50] H. Huang, B. K. Chen, Z. G. Wang, T. F. Hung, A. S. Susha, H. Z. Zhong, A. L. Rogach. Water resistant CsPbX3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices. Chem. Sci., 7, 5699-5703(2016).

    [51] T. T. Xuan, X. F. Yang, S. Q. Lou, J. J. Huang, Y. Liu, J. B. Yu, H. L. Li, K. L. Wong, C. X. Wang, J. Wang. Highly stable CsPbBr3 quantum dots coated with alkyl phosphate for white light-emitting diodes. Nanoscale, 9, 15286-15290(2017).

    [52] K. Z. Ma, X. Y. Du, Y. W. Zhang, S. Chen. In situ fabrication of halide perovskite nanocrystals embedded in polymer composites via microfluidic spinning microreactors. J. Mater. Chem. C, 5, 9398-9404(2017).

    [53] Y. H. Song, J. S. Yoo, B. K. Kang, S. H. Choi, E. K. Ji, H. S. Jung, D. H. Yoon. Long-term stable stacked CsPbBr3 quantum dot films for highly efficient white light generation in LEDs. Nanoscale, 8, 19523-19526(2016).

    [54] C. C. Lin, D. H. Jiang, C. C. Kuo, C. J. Cho, Y. H. Tsai, T. Satoh, C. Su. Water-resistant efficient stretchable perovskite-embedded fiber membranes for light-emitting diodes. ACS Appl. Mater. Interfaces, 10, 2210-2215(2018).

    [55] Y. Li, Y. Lv, Z. Q. Guo, L. B. Dong, J. H. Zheng, C. F. Chai, N. Chen, Y. J. Lu, C. Chen. One-step preparation of long-term stable and flexible CsPbBr3 perovskite quantum dots/ethylene vinyl acetate copolymer composite films for white light-emitting diodes. ACS Appl. Mater. Interfaces, 10, 15888-15894(2018).

    [56] Y. C. Wong, J. D. Ng, Z. K. Tan. Perovskite-initiated photopolymerization for singly dispersed luminescent nanocomposites. Adv. Mater., 30, 1800774(2018).

    [57] D. H. Jiang, Y. H. Tsai, L. Veeramuthu, F. C. Liang, L. C. Chen, C. C. Lin, T. Satoh, S. H. Tung, C. C. Kuo. Novel ultra-stable and highly luminescent white light-emitting diodes from perovskite quantum dots-polymer nanofibers through biaxial electrospinning. APL Mater., 7, 111105(2019).

    [58] J. Hai, H. Li, Y. Zhao, F. J. Chen, Y. Peng, B. D. Wang. Designing of blue, green, and red CsPbX3 perovskitecodoped flexible films with water resistant property and elimination of anion-exchange for tunable white light emission. Chem. Commun., 53, 5400-5403(2017).

    [59] Y. L. Zhang, M. J. Jiang, T. Han, X. T. Xiao, W. L. Chen, L. Wang, K. S. Wong, R. Wang, K. Wang, B. Z. Tang, K. S. Wu. Aggregation-induced emission luminogens as color converters for visible-light communication. ACS Appl. Mater. Interfaces, 10, 34418-34426(2018).

    Tools

    Get Citation

    Copy Citation Text

    Binhai Yu, Shunming Liang, Fengyi Zhang, Zongtao Li, Bin Liu, Xinrui Ding, "Water-stable CsPbBr3 perovskite quantum-dot luminous fibers fabricated by centrifugal spinning for dual white light illumination and communication," Photonics Res. 9, 1559 (2021)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical and Photonic Materials

    Received: Apr. 7, 2021

    Accepted: Jun. 20, 2021

    Published Online: Jul. 28, 2021

    The Author Email: Xinrui Ding (dingxr@scut.edu.cn)

    DOI:10.1364/PRJ.427066

    Topics