Chinese Journal of Lasers, Volume. 50, Issue 5, 0500001(2023)
Future of Optical Computing: Analog or Digital?
[2] Wang X Z, Zhao Y X, Pourpanah F. Recent advances in deep learning[J]. International Journal of Machine Learning and Cybernetics, 11, 747-750(2020).
[4] Wang P Y. Research and design of smart home speech recognition system based on deep learning[C], 218-221(2020).
[5] Young T, Hazarika D, Poria S et al. Recent trends in deep learning based natural language processing[J]. IEEE Computational Intelligence Magazine, 13, 55-75(2018).
[7] Cong J, Xiao B J. Minimizing computation in convolutional neural networks[M]. Wermter S, Weber C, Duch W, et al. Artificial neural networks and machine learning-ICANN 2014. Lecture notes in computer science, 8681, 281-290(2014).
[8] de Lima T F, Peng H T, Tait A N et al. Machine learning with neuromorphic photonics[J]. Journal of Lightwave Technology, 37, 1515-1534(2019).
[9] Chhowalla M, Jena D, Zhang H. Two-dimensional semiconductors for transistors[J]. Nature Reviews Materials, 1, 16052(2016).
[10] Das S, Sebastian A, Pop E et al. Transistors based on two-dimensional materials for future integrated circuits[J]. Nature Electronics, 4, 786-799(2021).
[12] Hills G, Lau C, Wright A et al. Modern microprocessor built from complementary carbon nanotube transistors[J]. Nature, 572, 595-602(2019).
[13] Zhong H S, Deng Y H, Qin J et al. Phase-programmable Gaussian boson sampling using stimulated squeezed light[J]. Physical Review Letters, 127, 180502(2021).
[15] Xu B H, Chen R M, Zhou J R et al. Recent progress and challenges regarding carbon nanotube on-chip interconnects[J]. Micromachines, 13, 1148(2022).
[16] Liu Y F, Zhang Z Y. Carbon based electronic technology in post-Moore era: progress, applications and challenges[J]. Acta Physica Sinica, 71, 068503(2022).
[17] Guo G C. Research status and future of quantum information technology[J]. Scientia Sinica (Informationis), 50, 1395-1406(2020).
[18] Zhou Z P, Xu P F, Dong X W. Computing on silicon photonic platform[J]. Chinese Journal of Lasers, 47, 0600001(2020).
[19] Wetzstein G, Ozcan A, Gigan S et al. Inference in artificial intelligence with deep optics and photonics[J]. Nature, 588, 39-47(2020).
[20] Caulfield H J, Dolev S. Why future supercomputing requires optics[J]. Nature Photonics, 4, 261-263(2010).
[21] Tooley F A P, Wherrett B S[M]. Optical computing(1989).
[22] Ambs P. Optical computing: a 60-year adventure[J]. Advances in Optical Technologies, 2010, 372652(2010).
[23] Zhou H L, Dong J J, Cheng J W et al. Photonic matrix multiplication lights up photonic accelerator and beyond[J]. Light, Science & Applications, 11, 30(2022).
[24] Weaver C S, Goodman J W. A technique for optically convolving two functions[J]. Applied Optics, 5, 1248-1249(1966).
[25] Zhu T F, Zhou Y H, Lou Y J et al. Plasmonic computing of spatial differentiation[J]. Nature Communications, 8, 15391(2017).
[26] Estakhri N M, Edwards B, Engheta N. Inverse-designed metastructures that solve equations[J]. Science, 363, 1333-1338(2019).
[27] Goodman J W[M]. Introduction to Fourier optics(1996).
[28] Sui X B, Wu Q H, Liu J et al. A review of optical neural networks[J]. IEEE Access, 8, 70773-70783(2020).
[29] Liu J, Wu Q H, Sui X B et al. Research progress in optical neural networks: theory, applications and developments[J]. PhotoniX, 2, 1-39(2021).
[30] Brunner D, Soriano M C, van der Sande G[M]. Photonic reservoir computing: optical recurrent neural networks(2019).
[31] El Srouji L, Krishnan A, Ravichandran R et al. Photonic and optoelectronic neuromorphic computing[J]. APL Photonics, 7, 051101(2022).
[32] Khoram E, Chen A, Liu D J et al. Nanophotonic media for artificial neural inference[J]. Photonics Research, 7, 823-827(2019).
[33] Sawchuk A A, Strand T C. Digital optical computing[J]. Proceedings of the IEEE, 72, 758-779(1984).
[34] Tanida J, Ichioka Y. II Digital optical computing[M]. Progress in optics, 77-114(2000).
[35] Zasedatelev A V, Baranikov A V, Sannikov D et al. Single-photon nonlinearity at room temperature[J]. Nature, 597, 493-497(2021).
[36] Minzioni P, Lacava C, Tanabe T et al. Roadmap on all-optical processing[J]. Journal of Optics, 21, 063001(2019).
[37] Yang X Y, Hu X Y, Yang H et al. Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities[J]. Nanophotonics, 6, 365-376(2017).
[38] Hardy J, Shamir J. Optics inspired logic architecture[J]. Optics Express, 15, 150-165(2007).
[39] Qiu C Y, Xiao H F, Wang L H et al. Recent advances in integrated optical directed logic operations for high performance optical computing: a review[J]. Frontiers of Optoelectronics, 15, 17(2022).
[40] Tanida J, Iwata M, Ichioka Y. Extended coding for optical array logic[J]. Applied Optics, 33, 3663-3669(1994).
[41] Jin Y, He H C, Lu Y T. Ternary optical computer principle[J]. Science China Information Sciences, 46, 145-150(2003).
[42] Taubenblatt M A. Optical interconnects for high-performance computing[J]. Journal of Lightwave Technology, 30, 448-457(2012).
[43] Mahajan R, Li X Q, Fryman J et al. Co-packaged photonics for high performance computing: status, challenges and opportunities[J]. Journal of Lightwave Technology, 40, 379-392(2022).
[44] Hao Y, Xiang S Y, Han G Q et al. Recent progress of integrated circuits and optoelectronic chips[J]. Science China Information Sciences, 64, 201401(2021).
[45] Zhang Y, Samanta A, Shang K P et al. Scalable 3D silicon photonic electronic integrated circuits and their applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 8201510(2020).
[46] Pasricha S, Nicolescu G, Seyedi A et al[M]. Silicon photonics for high-performance computing and beyond(2021).
[47] Cheng J W, Jiang X Y, Zhou H L et al. Advances and challenges of optoelectronic intelligent computing[J]. Chinese Journal of Lasers, 49, 1219001(2022).
[48] Li C, Zhang X, Li J W et al. The challenges of modern computing and new opportunities for optics[J]. PhotoniX, 2, 20(2021).
[49] Zhou C H, Yu J J, Li G W et al. Roadmap of optical computing[J]. Proceedings of SPIE, 11898, 118981B(2020).
[50] Nahmias M A, de Lima T F, Tait A N et al. Photonic multiply-accumulate operations for neural networks[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 7701518(2020).
[51] Jin Y, Wang Z H, Liu Y J et al. Ternary optical computer[J]. Chinese Journal of Nature, 41, 207-218(2019).
[52] Li C F. Optical bistability research for 20 years[J]. Physics, 25, 267-272(1996).
[53] Zhou T K, Lin X, Wu J M et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit[J]. Nature Photonics, 15, 367-373(2021).
[54] Chang J L, Sitzmann V, Dun X et al. Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification[J]. Scientific Reports, 8, 12324(2018).
[55] Shen Y C, Harris N C, Skirlo S et al. Deep learning with coherent nanophotonic circuits[J]. Nature Photonics, 11, 441-446(2017).
[56] Solli D R, Jalali B. Analog optical computing[J]. Nature Photonics, 9, 704-706(2015).
[57] Abdollahramezani S, Hemmatyar O, Adibi A. Meta-optics for spatial optical analog computing[J]. Nanophotonics, 9, 4075-4095(2020).
[58] Wu J M, Lin X, Guo Y C et al. Analog optical computing for artificial intelligence[J]. Engineering, 10, 133-145(2022).
[59] Vafa A P M Q, Karimi P, Khavasi A. Recent advances in spatial analog optical computing[C], 6-11(2018).
[60] Prise M E, Streibl N, Downs M M. Optical considerations in the design of digital optical computers[J]. Optical and Quantum Electronics, 20, 49-77(1988).
[61] Reif J H, Tyagi A. Efficient parallel algorithms for optical computing with the discrete Fourier transform (DFT) primitive[J]. Applied Optics, 36, 7327-7340(1997).
[62] Barakat R, Reif J. Polynomial convolution algorithm for matrix multiplication with application for optical computing[J]. Applied Optics, 26, 2707-2711(1987).
[63] Timmel A N, Daly J T. Multiplication with Fourier optics simulating 16-bit modular multiplication[C](2018).
[64] Brenner K H, Huang A, Streibl N. Digital optical computing with symbolic substitution[J]. Applied Optics, 25, 3054-3060(1986).
[65] Huang A, Tsunoda Y, Goodman J W et al. Optical computation using residue arithmetic[J]. Applied Optics, 18, 149-162(1979).
[66] Avizienis A. Signed-digit number representations for fast parallel arithmetic[J]. IRE Transactions on Electronic Computers, EC-10, 389-400(1961).
[67] Hwang K, Louri A. Optical multiplication and division using modified-signed-digit symbolic substitution[J]. Optical Engineering, 28, 284364(1989).
[68] Cherri A K, Habib M K, Alam M S. Optoelectronic recoded and nonrecoded trinary signed-digit adder that uses optical correlation[J]. Applied Optics, 37, 2153-2163(1998).
[69] Köppel S, Ulmann B, Heimann L et al. Using analog computers in today’s largest computational challenges[J]. Advances in Radio Science, 19, 105-116(2021).
[70] Haensch W, Gokmen T, Puri R. The next generation of deep learning hardware: analog computing[J]. Proceedings of the IEEE, 107, 108-122(2019).
[72] Chen W L, Zhang Z, Liu G. Retinomorphic optoelectronic devices for intelligent machine vision[J]. iScience, 25, 103729(2022).
[73] Yang X, Chen J Y, Dang Y J et al. Fast depth prediction and obstacle avoidance on a monocular drone using probabilistic convolutional neural network[J]. IEEE Transactions on Intelligent Transportation Systems, 22, 156-167(2021).
[74] Leith E N. Optical processing techniques for simultaneous pulse compression and beam sharpening[J]. IEEE Transactions on Aerospace and Electronic Systems, AES-4, 879-885(1968).
[75] Sheng Y L, Roberge D, Szu H H. Optical wavelet transform[J]. Optical Engineering, 31, 1840(1992).
[76] Naughton T J. Continuous-space model of computation is Turing universal[J]. Proceedings of SPIE, 4109, 121-128(2000).
[77] Naughton T J. A model of computation for Fourier optical processors[J]. Proceedings of SPIE, 4089, 386820(2000).
[78] Murdocca M[M]. A digital design methodology for optical computing(1990).
[79] Gibbs H M, McCall S L, Venkatesan T N C. Optical bistable devices: the basic components of all-optical systems?[J]. Optical Engineering, 19, 463-468(1980).
[80] Miller D A B, Chemla D S, Damen T C et al. Band-edge electroabsorption in quantum well structures: the quantum-confined stark effect[J]. Physical Review Letters, 53, 2173-2176(1984).
[81] Boyd G D, Fox A M, Milleret D A B et al. 33 ps optical switching of symmetric self-electro-optic effect devices[J]. Applied Physics Letters, 59, 2631-2633(1990).
[82] Ogura I, Tashiro Y, Kawai S et al. Reconfigurable optical interconnection using a two-dimensional vertical to surface transmission electrophotonic device array[J]. Applied Physics Letters, 57, 540-542(1990).
[83] Tanida J, Ichioka Y. Programming of optical array logic. 1: image data processing[J]. Applied Optics, 27, 2926-2930(1988).
[84] Jenkins B K, Sawchuk A A, Strand T C et al. Sequential optical logic implementation[J]. Applied Optics, 23, 3455-3464(1984).
[85] Guest C C, Gaylord T K. Truth-table look-up optical processing utilizing binary and residue arithmetic[J]. Applied Optics, 19, 1201-1207(1980).
[86] Jain K, Pratt G W. Optical transistor[J]. Applied Physics Letters, 28, 719-721(1976).
[87] Yanik M F, Fan S H, Soljacić M et al. All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry[J]. Optics Letters, 28, 2506-2508(2003).
[88] Jewell J L, Rushford M C, Gibbs H M et al. Single-etalon optical logic gales[C], THJ2(1984).
[89] Mukohzaka N, Yoshida N, Toyoda H et al. Diffraction efficiency analysis of a parallel-aligned nematic-liquid-crystal spatial light modulator[J]. Applied Optics, 33, 2804-2811(1994).
[90] Farhat N H, Shae Z Y. Scheme for enhancing the frame rate of magnetooptic spatial light modulators[J]. Applied Optics, 28, 4792-4800(1989).
[91] Pape D R, Hornbeck L J. Characteristics of the deformable mirror device for optical information processing[J]. Optical Engineering, 22, 226675(1983).
[92] Ono M, Hata M, Tsunekawa M et al. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides[J]. Nature Photonics, 14, 37-43(2020).
[93] Tanida J, Ichioka Y. Optical logic array processor using shadowgrams[J]. Journal of the Optical Society of America, 73, 800-809(1983).
[94] Bartelt H, Lohmann A W, Sicre E E. Optical logical processing in parallel with theta modulation[J]. Journal of the Optical Society of America A, 1, 944-951(1984).
[95] Huang A. Architectural considerations involved in the design of an optical digital computer[J]. Proceedings of the IEEE, 72, 780-786(1984).
[96] Brenner K H, Huang A. An optical processor based on symbolic substitution[C], WA4.1-4.3(1985).
[97] Jeon H I, Abushagur M A, Sawchuk A A et al. Digital optical processor based on symbolic substitution using holographic matched filtering[J]. Applied Optics, 29, 2113-2125(1990).
[98] Abraham G. Multiple-valued logic for optoelectronics[J]. Optical Engineering, 25, 250103(1986).
[99] Huang K S, Sawchuk A A, Jenkins B K et al. Digital optical cellular image processor (DOCIP): experimental implementation[J]. Applied Optics, 32, 166-173(1993).
[100] Wherrett B S, Walker A C, Craig R G A et al. The implementation of a programmable digital optical processor[C], CTuD4(1991).
[101] Tanida J, Ichioka Y. OPALS: optical parallel array logic system[J]. Applied Optics, 25, 1565-1570(1986).
[102] Tanida J, Miyazaki D, Ichioka Y. H-OPALS: hybrid optical parallel array logic system[J]. Proceedings of SPIE, 1806, 568-574(1993).
[103] Tanida J, Konishi T, Ichioka Y. P-OPALS: pure optical-parallel array logic system[J]. Proceedings of the IEEE, 82, 1668-1677(1994).
[104] Ishikawa M, Morita A, Takayanagi N. Massively parallel processing system with an architecture for optoelectronic computing[C], OThD.3(1993).
[105] Lentine A L, Reiley D J, Novotny R A et al. Asynchronous transfer mode distribution network by use of an optoelectronic VLSI switching chip[J]. Applied Optics, 36, 1804-1814(1997).
[106] Desmulliez M P, Tooley F A, Dines J A et al. Perfect-shuffle interconnected bitonic sorter: optoelectronic design[J]. Applied Optics, 34, 5077-5090(1995).
[107] Liu Y, Robertson B, Boisset G C et al. Design, implementation, and characterization of a hybrid optical interconnect for a four-stage free-space optical backplane demonstrator[J]. Applied Optics, 37, 2895-2914(1998).
[108] Iwata M, Tanida J, Ichioka Y. Database management using optical array logic[J]. Applied Optics, 32, 1987-1995(1993).
[109] Shastri B J, Tait A N, de Lima T F et al. Photonics for artificial intelligence and neuromorphic computing[J]. Nature Photonics, 15, 102-114(2021).
[110] Xu X Y, Tan M X, Corcoran B et al. 11 TOPS photonic convolutional accelerator for optical neural networks[J]. Nature, 589, 44-51(2021).
[111] Feldmann J, Youngblood N, Karpov M et al. Parallel convolutional processing using an integrated photonic tensor core[J]. Nature, 589, 52-58(2021).
[112] Ashtiani F, Geers A J, Aflatouni F. An on-chip photonic deep neural network for image classification[J]. Nature, 606, 501-506(2022).
[113] Goodman J W, Dias A R, Woody L M. Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms[J]. Optics Letters, 2, 1-3(1978).
[114] Lin X, Rivenson Y, Yardimci N T et al. All-optical machine learning using diffractive deep neural networks[J]. Science, 361, 1004-1008(2018).
[115] Miscuglio M, Hu Z B, Li S R et al. Massively-parallel amplitude-only Fourier neural network[J]. Optica, 7, 1812-1819(2020).
[116] Silva A, Monticone F, Castaldi G et al. Performing mathematical operations with metamaterials[J]. Science, 343, 160-163(2014).
[117] Pors A, Nielsen M G, Bozhevolnyi S I. Analog computing using reflective plasmonic metasurfaces[J]. Nano Letters, 15, 791-797(2015).
[118] Li L L, Zhao H T, Liu C et al. Intelligent metasurfaces: control, communication and computing[J]. eLight, 2, 7(2022).
[119] Wang Z C, Hu G W, Wang X W et al. Single-layer spatial analog meta-processor for imaging processing[J]. Nature Communications, 13, 2188(2022).
[120] Kulce O, Mengu D, Rivenson Y et al. All-optical synthesis of an arbitrary linear transformation using diffractive surfaces[J]. Light: Science & Applications, 10, 196(2021).
[121] Fu W W, Zhao D, Li Z Q et al. Ultracompact meta-imagers for arbitrary all-optical convolution[J]. Light: Science & Applications, 11, 62(2022).
[122] Wang T Y, Ma S Y, Wright L G et al. An optical neural network using less than 1 photon per multiplication[J]. Nature Communications, 13, 123(2022).
[123] Tanaka G, Yamane T, Héroux J B et al. Recent advances in physical reservoir computing: a review[J]. Neural Networks, 115, 100-123(2019).
[124] Feldmann J, Youngblood N, Wright C D et al. All-optical spiking neurosynaptic networks with self-learning capabilities[J]. Nature, 569, 208-214(2019).
[125] Pierangeli D, Marcucci G, Conti C. Large-scale photonic Ising machine by spatial light modulation[J]. Physical Review Letters, 122, 213902(2019).
[126] Fabre C. The optical Ising machine[J]. Nature Photonics, 8, 883-884(2014).
[127] Lu C H, Zhu B, Zhu C Y et al. All-optical logic gates and a half-adder based on lithium niobate photonic crystal micro-cavities[J]. Chinese Optics Letters, 17, 072301(2019).
[128] Bogaerts W, Pérez D, Capmany J et al. Programmable photonic circuits[J]. Nature, 586, 207-216(2020).
[129] Capmany J, Pérez D[M]. Programmable integrated photonics(2020).
[130] Zhang W F, Yao J P. Photonic integrated field-programmable disk array signal processor[J]. Nature Communications, 11, 406(2020).
[131] Pérez-López D, López A, DasMahapatra P et al. Multipurpose self-configuration of programmable photonic circuits[J]. Nature Communications, 11, 6359(2020).
[134] Zhou Y, Chen R, Chen W J et al. Advances in spatial analog optical computing devices[J]. Acta Physica Sinica, 69, 157803(2020).
[135] Zhou C H, Liu L R, Wang Z J. Binary-encoded vector-matrix multiplication architecture[J]. Optics Letters, 17, 1800-1802(1992).
[136] Zhou C H. Hopfield optical neural network[D](1995).
[137] Liu L R, Li G Q, Yin Y Z. Optical complex matrix-vector multiplication with negative binary inner products[J]. Optics Letters, 19, 1759-1761(1994).
[138] Zhou C H, Yu J J, Ma G Q. Optical convolution computing system and method based on multi imaging projection architecture[P].
[139] Ma G Q, Zhou C H, Xie Y F et al. Double-groove rectangular gratings for high-efficiency wideband vertical coupling in planar-integrated optical systems[J]. Chinese Optics Letters, 20, 090501(2022).
[140] Gruber M, Jahns J, Sinzinger S. Planar-integrated optical vector-matrix multiplier[J]. Applied Optics, 39, 5367-5373(2000).
[141] Jahns J, Huang A. Planar integration of free-space optical components[J]. Applied Optics, 28, 1602-1605(1989).
[142] Hofmann M, Hauguth-Frank S, Lebedev V et al. Sapphire-GaN-based planar integrated free-space optical system[J]. Applied Optics, 47, 2950-2955(2008).
[143] Zuo Y, Li B H, Zhao Y J et al. All-optical neural network with nonlinear activation functions[J]. Optica, 6, 1132-1137(2019).
[144] Ishio H, Minowa J, Nosu K. Review and status of wavelength-division-multiplexing technology and its application[J]. Journal of Lightwave Technology, 2, 448-463(1984).
[145] Gatto A, Parolari P, Boffi P. Frequency division multiplexing for very high capacity transmission in bandwidth-limited systems[C], W1K.1(2017).
[146] Zeb K, Zhang X P, Lu Z G. High capacity mode division multiplexing based MIMO enabled all-optical analog millimeter-wave over fiber fronthaul architecture for 5G and beyond[J]. IEEE Access, 7, 89522-89533(2019).
[147] Woods D. Computational complexity of an optical model of computation[D](2005).
[148] de Lima T F, Tait A N, Mehrabian A et al. Primer on silicon neuromorphic photonic processors: architecture and compiler[J]. Nanophotonics, 9, 4055-4073(2020).
[149] Dolev S, Fitoussi H. The traveling beams optical solutions for bounded NP-complete problems[M]. Crescenzi P, Prencipe G, Pucci G. Fun with algorithms. Lecture notes in computer science, 4475, 120-134(2007).
[150] Xiang J L, Colburn S, Majumdar A et al. Knowledge distillation circumvents nonlinearity for optical convolutional neural networks[J]. Applied Optics, 61, 2173-2183(2022).
[151] Bai B J, Luo Y, Gan T Y et al. To image, or not to image: class-specific diffractive cameras with all-optical erasure of undesired objects[J]. eLight, 2, 14(2022).
[152] Hennessy J L, Patterson D A. A new golden age for computer architecture[J]. Communications of the ACM, 62, 48-60(2019).
Get Citation
Copy Citation Text
Guoqing Ma, Changhe Zhou, Rongwei Zhu, Fenglu Zheng, Junjie Yu, Guohai Situ. Future of Optical Computing: Analog or Digital?[J]. Chinese Journal of Lasers, 2023, 50(5): 0500001
Category: reviews
Received: Sep. 2, 2022
Accepted: Oct. 11, 2022
Published Online: Feb. 23, 2023
The Author Email: Zhou Changhe (chazhou@mail.shcnc.ac.cn), Yu Junjie (Junjiey@siom.ac.cn), Situ Guohai (ghsitu@siom.ac.cn)