Infrared and Laser Engineering, Volume. 51, Issue 1, 20210826(2022)

Research progress of micro-nano structures enhanced infrared detectors (Invited)

Peng Zhu, Lei Xiao, Tai Sun, and Haofei Shi*
Author Affiliations
  • Micro-nano Manufacturing and System Integration Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
  • show less
    References(63)

    [1] Wang J, Fang H, Wang X, et al. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared[J]. Small, 13, 1700894(2017).

    [2] Guan X, Yu X, Periyanagounder D, et al. Recent progress in short-to long-wave infrared photodetection using 2D materials and heterostructures[J]. Advanced Optical Materials, 9, 2001708(2021).

    [3] Hu X, Wu J, Wu M, et al. Recent developments of infrared photodetectors with low-dimensional inorganic nanostructures[J]. Nano Research, 1-13(2021152).

    [4] Jiang F, Shi M, Zhou J, et al. Integrated photonic structure enhanced infrared photodetectors[J]. Advanced Photonics Research, 2, 2000187(2021).

    [5] Zhang T, Wang S J, Zhang X Y, et al. Recent progress on nanostructure-based broadband absorbers and their solar energy thermal utilization[J]. Frontiers of Chemical Science and Engineering, 15, 35-48(2021).

    [6] Zhuge F, Zheng Z, Luo P, et al. Nanostructured materials and architectures for advanced infrared photodetection[J]. Advanced Materials Technologies, 2, 1700005(2017).

    [7] Anguita J V, Ahmad M, Haq S, et al. Ultra-broadband light trapping using nanotextured decoupled graphene multilayers[J]. Science Advances, 2(2), e1501238(2016).

    [8] Wang H, Zhen H, Li S, et al. Self-rolling and light-trapping in flexible quantum well–embedded nanomembranes for wide-angle infrared photodetectors[J]. Science Advances, 2, e1600027(2016).

    [9] Lin X, Ding Z Y, Wang W P, et al. Investigation on the operation enhancement of HgCdTe photon-trapping detector[J]. Laser & Infrared, 47, 1510-1515(2017).

    [10] Lee S C, Krishna S, Brueck S R J, et al. Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors[J]. Applied Physics Letters, 97, 21112(2010).

    [11] Oay A, Avt A, Vvk A, et al. Planar plasmonic nanocavity for efficient enhancement of photoluminescence of molecular emitters[J]. Optical Materials, 94, 348-355(2019).

    [12] Lee S C, Krishna S, Brueck S R J, et al. Beyond the yablonovitch limit: Trapping light by frequency shift[J]. Applied Physics Letters, 98, 71107(2011).

    [13] Prajapati A, Chauhan A, Keizman D, et al. Approaching the Yablonovitch limit with free-floating arrays of subwavelength trumpet non-imaging light concentrators driven by extraordinary low transmission[J]. Nanoscale, 11, 3681-3688(2019).

    [14] Yokogawa S, Oshiyama I, Ikeda H, et al. IR sensitivity enhancement of CMOS Image Sensor with diffractive light trapping pixels[J]. Sci Rep, 7, 3832(2017).

    [15] Fang Z. Plasmonic silicon quantum dots extend photodetection into mid-infrared range[J]. Science Bulletin, 8-9(201762).

    [16] Tong J, Tobing L, Luo Y, et al. Single plasmonic structure enhanced dual-band room temperature infrared photodetection[J]. Scientific Reports, 8, 1548(2018).

    [17] Hu W D, Ge H, Xie R, et al. Skin effect photon-trapping enhancement in infrared photodiodes[J]. Optics Express, 29, 22823-22837(2021).

    [18] Ye Z H, Zhang P, Li Y, et al. Photon trapping photodiode design in HgCdTe mid-wavelength infrared focal plane array detectors[J]. Optical & Quantum Electronics, 46, 1385-1390(2014).

    [19] Cansizoglu H, Bartolo-Perez C, Gao Y, et al. Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700 nm[J]. Photonics Research, 6, 734-742(2018).

    [20] Zang K, Jiang X, Huo Y, et al. Silicon single-photon avalanche diodes with nano-structured light trapping[J]. Nature Communications, 8, 628(2017).

    [21] Yang J, Tang L, Luo W, et al. Light trapping in conformal graphene/silicon nanoholes for high performance photodetectors[J]. ACS Applied Materials & Interfaces, 11, 30421-30429(2019).

    [22] Gao Y, Cansizoglu H, Polat K G, et al. Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes[J]. Nature Photonics, 11, 301-308(2017).

    [23] Bartolo-Perez C, Qarony W, Ghandiparsi S, et al. Maximizing absorption in photon trapping ultra-fast silicon photodetectors[J]. Advanced Photonics Research, 2, 2000190(2021).

    [24] Wehner J, Smith E, Venzor G M, et al. HgCdTe photon trapping structure for broadband mid-wavelength infrared absorption[J]. Journal of Electronic Materials, 40, 1840-1846(2011).

    [25] Schuster J, Bellotti E. Numerical simulation of crosstalk in reduced pitch HgCdTe photon-trapping structure pixel arrays[J]. Optics Express, 21, 14712-14727(2013).

    [26] Luo L B, Zeng L H, Chao X, et al. Light trapping and surface plasmon enhanced high-performance NIR photodetector[J]. Scientific Reports, 4(1), 3914(2014).

    [27] Linbao L, Di W, Chao X, et al. PdSe2 multilayer on germanium nanocones array with light trapping effect for sensitive infrared photodetector and image sensing application[J]. Advanced Functional Materials, 29, 1900849(2019).

    [28] Liu J Q, Yang G, Wu G, et al. Silicon/perovskite core-shell heterojunctions with light trapping effect for sensitive self-driven NIR photodetectors[J]. ACS Applied Materials & Interfaces, 10, 27850-27857(2018).

    [29] Ning L, Jiang T H, Shao Z B, et al. Light-trapping enhanced ZnO-MoS2 core-shell nanopillar arrays for broadband ultraviolet-visible-near infrared photodetection[J]. Journal of Materials Chemistry C Materials for Optical & Electronic Devices, 6, 7077-7084(2018).

    [30] Nordin L, Li K, Briggs A, et al. Enhanced emission from ultra-thin long wavelength infrared superlattices on epitaxial plasmonic materials[J]. Applied Physics Letters, 116, 021102(2020).

    [31] Yang J, Zhu Z, Zhang J, et al. Mie resonance induced broadband near-perfect absorption in nonstructured graphene loaded with periodical dielectric wires[J]. Optics Express, 26, 20174-20182(2018).

    [32] Meng J, Cadusch J J, Crozier K B. Plasmonic mid-infrared filter array-detector array chemical classifier based on machine learning[J]. ACS Photonics, 8, 648-657(2021).

    [33] Nolde J A, Kim M, Kim C S, et al. Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings[J]. Applied Physics Letters, 106, 261109(2015).

    [34] Cheng F, Yang X, Gao J. Ultrasensitive detection and characterization of molecules with infrared plasmonic metamaterials[J]. Scientific Reports, 5, 14327(2015).

    [35] Mao F, Xie J, Xiao S, et al. Plasmonic light harvesting for multicolor infrared thermal detection[J]. Optics Express, 21, 295(2013).

    [36] Jessie R, Shenoi R V, Sanjay K, et al. Design of plasmonic photonic crystal resonant cavities for polarization sensitive infrared photodetectors[J]. Optics Express, 18, 3672-3686(2010).

    [37] Wei W, Bonakdar A, Mohseni H. Plasmonic enhanced quantum well infrared photodetector with high detectivity[J]. Applied Physics Letters, 96, 667(2010).

    [38] Zheng B, Zhao H, Manjavacas A, et al. Distinguishing between plasmon-induced and photoexcited carriers in a device geometry[J]. Nature Communications, 6, 7797(2015).

    [39] Xia F, Wang H, Xiao D, et al. Two-dimensional material nanophotonic[J]. Nature Photonics, 8, 899-907(2014).

    [40] Narang P, Sundararaman R, Atwater H A. Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion[J]. Nanophotonics, 5, 96-111(2016).

    [41] Brongersma M L, Halas N J, Nordlander P. Plasmon-induced hot carrier science and technology[J]. Nature Nanotechnology, 10, 25-34(2015).

    [42] Wang W, Klots A, Prasai D, et al. Hot electron-based near-infrared photodetection using bilayer MoS2[J]. Nano Letters, 15, 7440-7444(2015).

    [43] Knight M W, Sobhani H, Nordlander P, et al. Photodetection with active optical antennas[J]. Science, 332, 702-704(2011).

    [44] Chalabi H, Schoen D, Brongersma M L. Hot-electron photodetection with a plasmonic nanostripe antenna[J]. Nano Letters, 14, 1374-1380(2014).

    [45] Feng B, Zhu J, Bingrui L U, et al. Achieving infrared detection by all-Si plasmonic hot-electron detectors with high detectivity[J]. ACS Nano, 13, 8433-8441(2019).

    [46] Li W, Valentine J. Metamaterial perfect absorber based hot electron photodetection[J]. Nano Letters, 14, 3510-3514(2012).

    [47] Bouchon P, Koechlin C, Pardo F, et al. Wideband omni-directional infrared absorber with a patchwork of plasmonic nanoantennas[J]. Optics Letters, 37, 1038(2012).

    [48] Cui, Y X, Xu J, Fung K H, et al. A thin film broadband absorber based on multi-sized nanoantennas.[J]. Applied Physics Letters, 99, 253101(2011).

    [49] Feng R, Ding W, Liu L, et al. Dual-band infrared perfect absorber based on asymmetric T-shaped plasmonic array[J]. Optics Express, 22, A335-A343(2014).

    [50] Goldflam M, Kadlec E A, Olson B V, et al. Enhanced infrared detectors using resonant structures combined with thin type-II superlattice absorbers[J]. Applied Physics Letters, 109, 251103(2016).

    [51] Montoya J A, Tian Z B, Krishna S, et al. Ultra-thin infrared metamaterial detector for multicolor imaging applications[J]. Optics Express, 25, 23343(2017).

    [52] Jing Y L, Li Z F, Li Q, et al. Pixel-level plasmonic microcavity infrared photodetector[J]. Scientific Reports, 6, 25849(2016).

    [53] Li J, Li J Z, Zhou H, et al. Plasmonic metamaterial absorbers upon strong coupling effects for small pixel infrared detector[J]. Optics Express, 29, 22907-22921(2021).

    [54] Guo S, Deng J, Zhou J, et al. Combined role of polarization matching and critical coupling in enhanced absorption of 2 D materials based on metamaterials[J]. Optics Express, 29, 9269-9282(2021).

    [55] Zhou K, Cheng Q, Lu L, et al. Dual-band tunable narrowband near-infrared light trapping control based on a hybrid grating-based Fabry–Perot structure[J]. Optics Express, 28, 1647-1656(2020).

    [56] Audhkhasi R, Povinelli M L. Gold-black phosphorus nano-structured absorbers for efficient light trapping in the mid-infrared[J]. Optics Express, 28, 19562-19570(2020).

    [57] Felts J R, Law S, Roberts C M, et al. Near-field infrared absorption of plasmonic semiconductor microparticles studied using atomic force microscope infrared spectroscopy[J]. Applied Physics Letters, 102, 152110(2013).

    [58] Law S, Liu R, Wasserman D. Doped semiconductors with band-edge plasma frequencies[J]. Journal of Vacuum Science & Technology B, 32, 052601(2014).

    [59] Qian X, Vangala S, Wasserman D, et al. High-optical-quality nanosphere lithographically formed InGaAs quantum dots using molecular beam epitaxy assisted GaAs mass transport and overgrowth[J]. Journal of Vacuum Science & Technology B, 28, C3C9-C3C14(2010).

    [60] Xu X, Kwon H, Finch S, et al. Reflecting metagrating-enhanced thin-film organic light emitting devices[J]. Applied Physics Letters, 118, 053302(2021).

    [61] Nordin L, Kamboj A, Petluru P, et al. All-epitaxial integration of long-wavelength infrared plasmonic materials and detectors for enhanced responsivity[J]. ACS Photonics, 7, 1950-1956(2020).

    [62] Wang S H, Yoon N, Kamboj A, et al. Ultra-thin enhanced-absorption long-wave infrared detectors[J]. Applied Physics Letters, 112, 091104(2018).

    [63] Kamboj A, Nordin L, Petluru P, et al. All-epitaxial guided-mode resonance mid-wave infrared detectors[J]. Applied Physics Letters, 118, 201102(2021).

    CLP Journals

    [1] Hongwei Gao, Zhongming Yang, Hongbo Liu, Xingang Zhuang, Zhaojun Liu. Design of portable infrared target simulator system[J]. Infrared and Laser Engineering, 2023, 52(3): 20220554

    Tools

    Get Citation

    Copy Citation Text

    Peng Zhu, Lei Xiao, Tai Sun, Haofei Shi. Research progress of micro-nano structures enhanced infrared detectors (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210826

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Infrared technology and application

    Received: Oct. 25, 2021

    Accepted: --

    Published Online: Mar. 8, 2022

    The Author Email: Haofei Shi (shi @cigit.ac.cn)

    DOI:10.3788/IRLA20210826

    Topics