Laser & Optoelectronics Progress, Volume. 59, Issue 2, 0210014(2022)
Hyperspectral Image Classification Based on Modified DenseNet and Spatial Spectrum Attention Mechanism
Fig. 3. Model of the spatial spectrum attention mechanism. (a) Channel attention mechanism; (b) spatial attention mechanism
Fig. 7. Pavia University data set and label. (a) Pavia University data set; (b) label
Fig. 9. Classification results of the Indian Pines data set. (a) Indian Pines data set; (b) label; (c) 2D_CNN; (d) 3D_CNN; (e) M3RCNN; (f) 3D_DenseNet; (g) MDSSAN
Fig. 10. Classification results of the Pavia University data set. (a) Pavia University data set; (b) label; (c) 2D_CNN;(d) 3D_CNN; (e) M3RCNN; (f) 3D_DenseNet; (g) MDSSAN
Fig. 11. Classification result diagram of the KSC data set. (a) KSC data set; (b) label; (c) 2D_CNN; (d) 3D_CNN; (e) M3RCNN; (f) 3D_DenseNet; (g) MDSSAN
|
|
|
|
|
|
|
Get Citation
Copy Citation Text
Xin Wang, Yanguo Fan. Hyperspectral Image Classification Based on Modified DenseNet and Spatial Spectrum Attention Mechanism[J]. Laser & Optoelectronics Progress, 2022, 59(2): 0210014
Category: Image Processing
Received: Jan. 21, 2021
Accepted: Mar. 15, 2021
Published Online: Dec. 23, 2021
The Author Email: Xin Wang (3166588225@qq.com)