Laser & Optoelectronics Progress, Volume. 61, Issue 9, 0927002(2024)

Quantum Classifier Based on Compact Encoding and Polynomial Kernel

Ruihong Jia*, Guang Yang, Min Nie, Yuanhua Liu, and Meiling Zhang
Author Affiliations
  • School of Communication and Information Engineering & School of Artificial Intelligence, Xi'an University of Posts & Telecommunications, Xi'an 710121, Shaanxi, China
  • show less
    Figures & Tables(9)
    Circuit structure of swap-test classifier
    Circuit structure of compact quantum classifier
    Circuit structure of state preparation process
    Comparison between the expected values of two classifiers and the theory expected value
    Iterative process of dataset classification for original consine kernel, linear kernel compact and polynomial kernel compact. (a) Half-moon dataset; (b) circular dataset; (c) Iris dataset; (d) BreastCancer dataset
    Decision boundary of constructed dataset. (a) (b) Different forms of binary classification; (c) three-way classification; (d) four-tape classification
    Entanglement difference between compact and non-compact swap-test classifiers
    Relationship between entanglement difference and data amount
    • Table 1. Classification results of four types datasets

      View table

      Table 1. Classification results of four types datasets

      ClassifierHalf-moonCircularIrisBreastCancer
      Swap-test1.001.000.960.94
      Compact1.001.000.980.97
    Tools

    Get Citation

    Copy Citation Text

    Ruihong Jia, Guang Yang, Min Nie, Yuanhua Liu, Meiling Zhang. Quantum Classifier Based on Compact Encoding and Polynomial Kernel[J]. Laser & Optoelectronics Progress, 2024, 61(9): 0927002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Quantum Optics

    Received: Jan. 5, 2023

    Accepted: Mar. 15, 2023

    Published Online: Apr. 11, 2024

    The Author Email: Ruihong Jia (hongrjia@163.com)

    DOI:10.3788/LOP223345

    CSTR:32186.14.LOP223345

    Topics