Acta Photonica Sinica, Volume. 50, Issue 9, 0906008(2021)
Four Wave Mixing Noise Analysis of Classical-quantum Signals Co-channel Transmission System
[1] BENNETT C H, BRASSARD G. Quantum cryptography: public key distribution and coin tossing[C]. Bangalore, 175-179(1984).
[2] GISIN N, RIBORDY G, TITTEL W et al. Quantum cryptography[J]. Review of Modern Physics, 74, 145-195(2002).
[3] SCARANI V, PASQUINUCCI H B, CERF N J et al. The security of practical quantum key distribution[J]. Review of Modern Physics, 81, 1301-1350(2009).
[4] YIN Hualei, CHEN Tengyun, YU Zongwen et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber[J]. Physical Review Letters, 117, 190501(2016).
[5] LU Fengyu, YIN Zhenqiang, WANG Rong et al. Practical issues of twin-field quantum key distribution[J]. New Journal of Physics, 21, 123030(2019).
[6] TOWNSEND P D. Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fiber using wavelength-division-multiplexing[J]. Electronics Letters, 33, 188-190(1997).
[7] NWEKEA N I, TOLIVER P, RUNSER R J et al. Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels[J]. Applied Physics Letters, 87, 174103(2005).
[8] CHAPURAN T E, TOLIVER P, PETERS N A et al. Optical networking for quantum key distribution and quantum communications[J]. New Journal of Physics, 11, 105001(2009).
[9] PETERS N A, TOLIVER P, CHAPURAN T E. Dense wavelength multiplexing of 1550nm QKD with strong classical channels in reconfigurable networking environments[J]. New Journal of Physics, 11(2009).
[10] ERAERDS P, WALENTA N, LEGRE M. Quantum key distribution and 1 Gbps data encryption over a single fiber[J]. New Journal of Physics, 12(2010).
[11] PATEL K A, DYNES J F, LUCAMARINI M et al. Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks[J]. Applied Physics Letters, 104, 175-179(2014).
[12] NIU Jianing, SUN Yongmei, CAI Chun et al. Optimized channel allocation scheme for jointly reducing four-wave mixing and Raman scattering in the DWDM-QKD system[J]. Applied Optics, 57, 7987-7996(2018).
[13] PATEL K A, DYNES J F, CHOI I et al. Coexistence of high-bit-rate quantum key distribution and data on optical fiber[J]. Physical Review X, 2(2012).
[14] DYNES J F, PLEWS A et al. Ultra-high bandwidth quantum secured data transmission[J]. Scientific Reports, 6, 35149(2016).
[15] WANG Liujun, ZOU Kaiheng, SUN Wei et al. Long distance co-propagation of quantum key distribution and terabit classical optical data channels[J]. Physical Review A, 95(2017).
[16] MAO Yingqiu, WANG Bixiao, ZHAO Chunxu et al. Integrating quantum key distribution with classical communications in backbone fiber network[J]. Optics Express, 26(2018).
[17] WANG B X, MAO Y Q, SHEN L et al. Long-distance transmission of quantum key distribution coexisting with classical optical communication over weakly-coupled few-mode fiber[J]. Optics Express, 28, 12558-12565(2020).
[18] SUN Yongmei, ZHANG Peng, JIA Xianglong等. A low-noise wavelength assignment scheme for quantum-based secure optical communication[J]. Radio Communications Technology, 46, 658-664(2020).
[19] RAN Pan, HU Min, GUO Banghong. Noise processing technology of quantum and classical fusion communication system based on DWDM[J]. Optical Communication Technology, 44, 22-26(2020).
[20] DU Shanna, TIAN Yan, LI Yongmin. Impact of four-wave-mixing noise from dense-wavelength-division multiplexing systems on entangled-state continuous-variable quantum key distribution[J]. Physics Review Applied, 14(2020).
[21] ZHAO Liangyuan, WU Qianjun, QIU Hongkang et al. Practical security of wavelength-multiplexed decoy-state quantum key distribution[J]. Physical Review A, 103(2021).
[22] LUO Junwen, LI Yunxia, SHI Lei等. Study on the coexistence of quantum-classical signals based on single-mode operation in few-mode fiber[J]. Acta Photonica Sinica, 7, 92-98(2017).
[23] SUN Yongmei, NIU Jianing, JI Yuefeng. Noise suppression in the co-propagation of quantum signals and classical optical signals[J]. Telecommunications Science, 34, 43-53(2018).
[24] MARKOWSKI K, CHORCHOS L, TURKIEWICZ J P. Influence of four wave mixing in short- and medium-range 1310 nm dense wavelength division multiplexing systems[J]. Applied Optics, 55, 3051-3057(2016).
[25] MA Xiongfeng, QI Bing, ZHAO Yi et al. Practical decoy state for quantum key distribution[J]. Physical Review A, 72(2005).
[26] MAO Xinrong, KOU Zhaofei, ZHANG Jianhua等. Two improved methods of suppression four wave mixing effect in optical fiber transmission[J]. Laser & Optoelectronics Progress, 54, 95-101(2017).
[27] BOSCO G, CARENA A, CURRI V et al. On the use of NRZ, RZ, and CSRZ modulation at 40 Gb/s with narrow DWDM channel spacing[J]. Journal of Lightwave Technology, 20, 1694-1704(2002).
Get Citation
Copy Citation Text
Jiahao LI, Lei SHI, Tianxiu LI, Yang XUE, Yani LI. Four Wave Mixing Noise Analysis of Classical-quantum Signals Co-channel Transmission System[J]. Acta Photonica Sinica, 2021, 50(9): 0906008
Category: Fiber Optics and Optical Communications
Received: Mar. 22, 2021
Accepted: May. 26, 2021
Published Online: Oct. 22, 2021
The Author Email: