Opto-Electronic Engineering, Volume. 45, Issue 11, 180298(2018)
High Q-factor terahertz metamaterial based on analog of electromagnetically induced transparency and its sensing characteristics
[1] [1] Lukin M D, Imamo lu A. Controlling photons using electromagnetically induced transparency[J]. Nature, 2001, 413(6853): 273–276.
[2] [2] Fleischhauer M, Imamoglu A, Marangos J P. Electromagnetically induced transparency: optics in coherent media[J]. Reviews of Modern Physics, 2005, 77(2): 633–673.
[3] [3] Vafapour Z, Alaei H. Subwavelength micro-antenna for achieving slow light at microwave wavelengths via electromagnetically induced transparency in 2D metamaterials[J]. Plasmonics, 2017, 12(5): 1343–1352.
[4] [4] Vafapour Z, Alaei H. Achieving a high Q-factor and tunable slow-light via classical electromagnetically induced transparency (Cl-EIT) in metamaterials[J]. Plasmonics, 2017, 12(2): 479–488.
[5] [5] Zhang S, Genov D A, Wang Y, et al. Plasmon-induced transparency in metamaterials[J]. Physical Review Letters, 2008, 101(4): 047401.
[6] [6] Pu M B, Hu C G, Huang C, et al. Investigation of Fano resonance in planar metamaterial with perturbed periodicity[J]. Optics Express, 2013, 21(1): 992–1001.
[7] [7] He X J, Wang L, Wang J M, et al. Electromagnetically induced transparency in planar complementary metamaterial for refractive index sensing applications[J]. Journal of physics D: Applied Physics, 2013, 46(36): 365302.
[8] [8] Han H, Wu D W, Liu J J, et al. A terahertz metamaterial analog of electromagnetically induced transparency[J]. Acta Optica Sinica, 2014, 34(4): 0423003.
[9] [9] Liu C X, Liu P G, Bian L, et al. Dynamically tunable electromagnetically induced transparency analogy in terahertz metamaterial[ J]. Optics Communications, 2018, 410: 17–24.
[10] [10] Guo Y H, Yan L S, Pan W, et al. Electromagnetically induced transparency (EIT)-like transmission in side-coupled complementary split-ring resonators[J]. Optics Express, 2012, 20(22): 24348–24355.
[11] [11] He Xunjun, Zhang Qinfeng, Lu Guangjun, et al. Tunable ultrasensitive terahertz sensor based on complementary graphene metamaterials[J]. RSC Advances, 2016, 6: 52212–52218.
[12] [12] Lei Wang L, Li T Y, He X J. Switching electromagnetically induced transparency in reconfigurable terahertz metamaterials[ J]. Integrated Ferroelectrics, 2015, 161(1): 45–50.
[13] [13] Prakash Pitchappa P, Manjappa M, Ho C P, et al. Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial[J]. Advanced Optical Materials, 2016, 4(4): 541–547.
[14] [14] Tang Y Z, Ma W Y, Wei Y H, et al. A tunable terahertz metamaterial and its sensing performance[J]. Opto-Electronic Engineering, 2017, 44(4): 453–457.
[15] [15] Chiam S Y, Singh R, Rockstuhl C, et al. Analogue of electromagnetically induced transparency in a terahertz metamaterial[ J]. Physical Review B, 2009, 80(15): 153103.
[16] [16] Liu X J, Gu J Q, Singh R, et al. Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode[J]. Applied Physics Letters, 2012, 100(13): 131101.
[17] [17] Sun Y R, Shi T L, Liu J J, et al. Terahertz label-free bio-sensing with EIT-Like metamaterials[J]. Acta Optica Sinica, 2016, 36(3): 0328001.
[18] [18] Zheng W, Fan F, Chen M, et al. Terahertz refractive index sensing of microfluid based on metamaterials[J]. Infrared and Laser Engineering, 2017, 46(4): 0420003.
Get Citation
Copy Citation Text
Ma Changwei, Ma Wenying, Tan Yi, Tang Yuzhu. High Q-factor terahertz metamaterial based on analog of electromagnetically induced transparency and its sensing characteristics[J]. Opto-Electronic Engineering, 2018, 45(11): 180298
Category: Article
Received: May. 31, 2018
Accepted: --
Published Online: Dec. 16, 2018
The Author Email: Ma Changwei (1257024584@qq.com)