Chinese Journal of Lasers, Volume. 42, Issue 7, 703005(2015)
Molecular Dynamics Simulation of Plastic Deformation of Polycrystalline Cu under Mechanical Effect with Ultrahigh Strain Rate
[1] [1] X C Li, Y K Zhang, Y L Lu, et al.. Research of corrosion resistance for AZ31Magnesium alloy by laser shock processing[J]. Chinese J Lasers, 2014, 37(4): 0403002.
[2] [2] Y Chai, J Ren, W F He, et al.. Effect of laser shock processing on the fatigue property of K4030 alloy blade[J]. Laser & Optoelectronics Progress, 2014, 51(1): 011405.
[3] [3] M Luo, K Y Luo, Q W Wang, et al.. Numerical simulation of laser shock peening on residual stress field of 7075-T6 aluminum alloy welding[J]. Acta Optica Sinica, 2014, 34(4): 0414003.
[4] [4] J Z Lu, K Y Luo, A X Feng, et al.. Micro-structure enhancement mechanism of LY2 aluminum alloy by means of a single laser shock processing[J]. Chinese J Lasers, 2010, 37(10): 2662-2666.
[6] [6] B J Alder, T E Wainwright. Studies in molecular dynamics.Ⅰ. general method[J]. The Journal of Chemical Physics, 1959, 31(2): 459-466.
[7] [7] Zhang Junjie. Molecular Dynamics Study of Generation Mechanism of Surface Layer in Nanomechanical Machining of Crystalline Copper[D]. Harbin: Harbin Institute of Technology, 2011.
[8] [8] Wang Guimin. Molecular Dynamics Simulation of the Mechanical Behavior of Nanotwinned Copper[D]. Hangzhou: Zhejiang University, 2011.
[9] [9] T Kadoyoshi, H Kaburaki, F Shimizu, et al.. Molecular dynamics study on the formation of stacking fault tetrahedra and unfaulting of Frank loops in fcc metals[J]. Acta Materialia, 2007, 55(9): 3073-3080.
[10] [10] J Schiotz, T Vegge, F D DiTolla, et al.. Atomic- scale simulations of the mechanical deformation of nanocrystalline metals[J]. Physical Review B, 1999, 60(17): 11971-11983.
[11] [11] S Plimpton. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117: 1-19.
[12] [12] J Cai, Y Y Ye. Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys.[J]. Physical Review B Condensed Matter, 1996, 54(12): 8398-8410.
[13] [13] W Ma, W J Zhu, Y L Zhang, et al.. Construction of metallic nanocrystalline samples by molecular dynamics simulation[J]. Acta Physica Sinica, 2010, 59(7): 4781-4787.
[14] [14] A P Gerlich, L Yue, P F Mendez, et al.. Plastic deformation of polycrystalline aluminum at high temperatures and strain rate[J]. Acta Materialia, 2010, 58(6): 2176-2185.
[15] [15] G J Ackland, A P Jones. Applications of local crystal structure measures in experiment and simulation[J]. Physical Review B, 2006, 73(5): 054104.
[16] [16] W Humphrey, A Dalke, K Schulten. VMD: visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38.
[17] [17] H F Lou, M P Wang, N Tang, et al.. Microstructures of twin- roll cast AZ31B Mg alloy and its deformation mechanism[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(9): 1584-1589.
[18] [18] J P Hirth, J Lothe. Theory of Dislocations[M]. New York: Wiley & Sons, 1982.
[19] [19] M D Sangid, T Ezaz, H Sehitoglu, et al.. Energy of slip transmission and nucleation at grain boundaries[J]. Acta Materialia, 2011, 59(1): 283-296.
Get Citation
Copy Citation Text
Wang Zhilong, Luo Kaiyu, Liu Yue, Lu Jinzhong. Molecular Dynamics Simulation of Plastic Deformation of Polycrystalline Cu under Mechanical Effect with Ultrahigh Strain Rate[J]. Chinese Journal of Lasers, 2015, 42(7): 703005
Category:
Received: Jan. 16, 2015
Accepted: --
Published Online: Sep. 24, 2022
The Author Email: Zhilong Wang (spyitachi525@sina.cn)