Journal of Quantum Optics, Volume. 31, Issue 1, 10102(2025)
Photon Blockade in the Fully Coupled Tripartite Hybrid System
[1] [1] KIPPENBERG T J, VAHALA K J. Cavity Optomechanics: Back-Action at the Mesoscale[J]. Science, 2008, 321(5893):1172-1176. DOI: 10.1126/science.1156032.
[2] [2] ASPELMEYER M, GRBLACHER S, HAMMERER K, et al. Quantum optomechanics-throwing a glance [Invited][J]. Journal of the Optical Society of America B, 2010, 27(6): A189. DOI: 10.1364/josab.27.00a189.
[3] [3] FAVERO I, KARRAI K. Optomechanics of deformable optical cavities[J]. Nature Photonics, 2009, 3(4):201-205. DOI: 10.1038/nphoton.2009.42.
[4] [4] HARTMANN M J, PLENIO M B. Steady State Entanglement in the Mechanical Vibrations of Two Dielectric Membranes[J]. Physical Review Letters, 2008, 101(20):200503. DOI: 10.1103/physrevlett.101.200503.
[5] [5] PAZ J P, RONCAGLIA A J. Dynamics of the Entanglement between Two Oscillators in the Same Environment[J]. Physical Review Letters, 2008, 100(22):220401. DOI: 10.1103/physrevlett.100.220401.
[6] [6] RABL P. Photon Blockade Effect in Optomechanical Systems[J]. Physical Review Letters, 2011, 107(6):063601. DOI: 10.1103/physrevlett.107.063601.
[7] [7] BIRNBAUM K M, BOCA A, MILLER R, et al. Photon blockade in an optical cavity with one trapped atom[J]. Nature, 2005, 436(7047):87-90. DOI: 10.1038/nature03804.
[8] [8] AGARWAL G S, HUANG S. Electromagnetically induced transparency in mechanical effects of light[J]. Physical Review A, 2010, 81(4):041803. DOI: 10.1103/physreva.81.041803.
[9] [9] WEIS S, RIVIERE R, DELEGLISE S, et al. Optomechanically Induced Transparency[J]. Science, 2010, 330(6010):1520-1523. DOI: 10.1126/science.1195596.
[10] [10] FLEISCHHAUER M, LUKIN M D. Dark-State Polaritons in Electromagnetically Induced Transparency[J]. Physical Review Letters, 2000, 84(22):5094-5097. DOI: 10.1103/physrevlett.84.5094.
[11] [11] LIU C, DUTTON Z, BEHROOZI C H, et al. Observation of coherent optical information storage in an atomic medium using halted light pulses[J]. Nature, 2001, 409(6819):490-493. DOI: 10.1038/35054017.
[12] [12] VAN DER WAL C H. Atomic Memory for Correlated Photon States[J]. Science, 2003, 301(5630):196-200. DOI: 10.1126/science.1085946.
[13] [13] ZUBAIRY M S, KIM M, SCULLY M O. Cavity-QED-based quantum phase gate[J]. Physical Review A, 2003, 68(3):033820. DOI: 10.1103/physreva.68.033820.
[14] [14] WELTE S, HACKER B, DAISS S, et al. Photon-Mediated Quantum Gate between Two Neutral Atoms in an Optical Cavity[J]. Physical Review X, 2018, 8(1):011018. DOI: 10.1103/physrevx.8.011018.
[15] [15] REISERER A, KALB N, REMPE G, et al. A quantum gate between a flying optical photon and a single trapped atom[J]. Nature, 2014, 508(7495):237-240. DOI: 10.1038/nature13177.
[16] [16] FARAON A, FUSHMAN I, ENGLUND D, et al. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade[J]. Nature Physics, 2008, 4(11):859-863. DOI: 10.1038/nphys1078.
[17] [17] LANG C, BOZYIGIT D, EICHLER C, et al. Observation of Resonant Photon Blockade at Microwave Frequencies Using Correlation Function Measurements[J]. Physical Review Letters, 2011, 106(24):243601. DOI: 10.1103/physrevlett.106.243601.
[18] [18] KNILL E, LAFLAMME R, MILBURN G J. A scheme for efficient quantum computation with linear optics[J]. Nature, 2001, 409(6816):46-52. DOI: 10.1038/35051009.
[19] [19] DUAN L M, LUKIN M D, CIRAC J I, et al. Long-distance quantum communication with atomic ensembles and linear optics[J]. Nature, 2001, 414(6862):413-418. DOI: 10.1038/35106500.
[20] [20] KIMBLE H J. The quantum internet[J]. Nature, 2008, 453(7198):1023-1030. DOI: 10.1038/nature07127.
[21] [21] SANGOUARD N, SIMON C, DE RIEDMATTEN H, et al. Quantum repeaters based on atomic ensembles and linear optics[J]. Reviews of Modern Physics, 2011, 83(1):33-80. DOI: 10.1103/revmodphys.83.33.
[22] [22] GIOVANNETTI V, LLOYD S, MACCONE L. Advances in quantum metrology[J]. Nature Photonics, 2011, 5(4):222-229. DOI: 10.1038/nphoton.2011.35.
[23] [23] ZHOU Y H, MINGANTI F, QIN W, et al. N-photon blockade with an n-photon parametric drive[J]. Physical Review A, 2021, 104:053718. DOI: 10.1103/PhysRevA.104.053718.
[24] [24] HAMSEN C, TOLAZZI K N, WILK T, et al. Two-Photon Blockade in an Atom-Driven Cavity QED System[J]. Physical Review Letters, 2017, 118(13):133604. DOI: 10.1103/physrevlett.118.133604.
[25] [25] MLLER K, RUNDQUIST A, FISCHER K A, et al. Coherent Generation of Nonclassical Light on Chip via Detuned Photon Blockade[J]. Physical Review Letters, 2015, 114(23):233601. DOI: 10.1103/physrevlett.114.233601.
[26] [26] FARAON A, MAJUMDAR A, VUKOVI J. Generation of nonclassical states of light via photon blockade in optical nanocavities[J]. Physical Review A, 2010, 81(3):033838. DOI: 10.1103/physreva.81.033838.
[27] [27] HOFFMAN A J, SRINIVASAN S J, SCHMIDT S, et al. Dispersive Photon Blockade in a Superconducting Circuit[J]. Physical Review Letters, 2011, 107(5):053602. DOI: 10.1103/physrevlett.107.053602.
[28] [28] HAMSEN C, TOLAZZI K N, WILK T, et al. Two-Photon Blockade in an Atom-Driven Cavity QED System[J]. Physical Review Letters, 2017, 118(13):133604. DOI: 10.1103/physrevlett.118.133604.
[29] [29] WU Q C, ZHANG X Y, WANG Y M, et al. Two-photon blockade with second-order nonlinearity in cavity systems[J]. International Journal of Theoretical Physics, 2022, 61(2):1-8. DOI: 10.1007/s10773-022-05024-x.
[30] [30] MIRANOWICZ A, PAPRZYCKA M, LIU Y, et al. Two-photon and three-photon blockades in driven nonlinear systems[J]. Physical Review A, 2013, 87(2):023809. DOI: 10.1103/physreva.87.023809.
[31] [31] HOLZ T, BETZHOLZ R, BIENERT M. Suppression of Rabi oscillations in hybrid optomechanical systems[J]. Physical Review A, 2015, 92(4):043822. DOI: 10.1103/physreva.92.043822.
[32] [32] ZHOU B, LI G. Ground-state cooling of a nanomechanical resonator via single-polariton optomechanics in a coupled quantum-dot-cavity system[J]. Physical Review A, 2016, 94(3):033809. DOI: 10.1103/physreva.94.033809.
[33] [33] FORN-DAZ P, LAMATA L, RICO E, et al. Ultrastrong coupling regimes of light-matter interaction[J]. Reviews of Modern Physics, 2019, 91(2):025005. DOI: 10.1103/revmodphys.91.025005.
[34] [34] RESTREPO J, FAVERO I, CIUTI C. Fully coupled hybrid cavity optomechanics: Quantum interferences and correlations[J]. Physical Review A, 2017, 95(2):023832. DOI: 10.1103/physreva.95.023832.
[35] [35] HAMMERER K, WALLQUIST M, GENES C, et al. Strong Coupling of a Mechanical Oscillator and a Single Atom[J]. Physical Review Letters, 2009, 103(6):063005. DOI: 10.1103/physrevlett.103.063005.
[36] [36] BRAVYI S, DIVINCENZO D P, LOSS D. Schrieffer-Wolff transformation for quantum many-body systems[J]. Annals of Physics, 2011, 326(10):2793-2826. DOI: 10.1016/j.aop.2011.06.004.
[37] [37] APORVARI A S, VITALI D. Strong Coupling Optomechanics Mediated by a Qubit in the Dispersive Regime[J]. Entropy, 2021, 23(8):966. DOI: 10.3390/e23080966.
Get Citation
Copy Citation Text
YAN Shurui, WANG Yueming. Photon Blockade in the Fully Coupled Tripartite Hybrid System[J]. Journal of Quantum Optics, 2025, 31(1): 10102
Category:
Received: Apr. 10, 2023
Accepted: Apr. 17, 2025
Published Online: Apr. 17, 2025
The Author Email: WANG Yueming (wang_yue_ming@163.com)