Laser & Optoelectronics Progress, Volume. 57, Issue 6, 061019(2020)

Driving Behavior Recognition Method Based on Tutor-Student Network

Jinghui Chu, Shan Zhang, Wenhao Tang, and Wei Lü*
Author Affiliations
  • School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
  • show less
    Figures & Tables(12)
    Traditional teacher-student network and proposed method. (a) Traditional teacher-student network; (b) proposed method
    Structural diagram of proposed model
    Feature activation maps obtained from feature maps of different convolution layers in tutor network
    Flow chart of guiding tailoring module
    Ten kinds of action image samples from Kaggle dataset
    Ten kinds of action image samples from AUC data set
    Visualization results on Kaggle data set
    • Table 1. Comparative experimental results with and without data enhancement in Kaggle dataset

      View table

      Table 1. Comparative experimental results with and without data enhancement in Kaggle dataset

      ModelRandomcroppingImageresolution/PPIAccuracy /%
      ResNet18No22489.30
      ResNet18Yes22492.56
      ResNet50No22490.17
      ResNet50Yes22494.93
    • Table 2. Experimental results of setting different resolutions in Kaggle data set

      View table

      Table 2. Experimental results of setting different resolutions in Kaggle data set

      ModelParameterquantityFlopsImageresolution/PPIAccuracy /%
      ResNet1811,181,6421.82G22492.56
      ResNet1811,181,6427.28G44894.21
      ResNet5023,528,5224.12G22494.93
      ResNet5023,528,52216.47G44896.48
    • Table 3. Comparative experimental results of different models in Kaggle data set

      View table

      Table 3. Comparative experimental results of different models in Kaggle data set

      ModelParameterquantityFlopsImageresolution/PPIAccuracy /%
      ResNet1811,181,6421.82G22492.56
      ResNet3421,289,8023.67G22494.67
      ResNet5023,528,5224.12G22494.93
      ResNet10142,520,6507.84G22495.69
      S-Net(ResNet18)22,363,2849.10G22492.78
      S-Net(ResNet50)34,710,16411.40G22496.29
    • Table 4. Comparative experimental results of model joint discrimination in Kaggle data set

      View table

      Table 4. Comparative experimental results of model joint discrimination in Kaggle data set

      ModelParameter quantityFlopsImage resolution/PPIAccuracy /%
      S-Net (ResNet18)22,363,2849.10G22492.78
      S-Net (ResNet50)34,710,16411.40G22496.29
      ResNet18+ResNet50(ensemble)34,710,1645.94G224(T-Net)+224(S-Net)95.95
      ResNet18+ ResNet50(ensemble)34,710,16411.40G448(T-Net)+224(S-Net)96.10
      T-Net(ResNet18)+S-Net(ResNet18)22,363,2849.10G448(T-Net)+224(S-Net)95.99
      T-Net(ResNet18)+S-Net(ResNet50)34,710,1645.94G224(T-Net)+224(S-Net)96.56
      T-Net(ResNet18)+S-Net(ResNet50)34,710,16411.40G448(T-Net)+224(S-Net)97.92
    • Table 5. Model comparison results on AUC dataset

      View table

      Table 5. Model comparison results on AUC dataset

      ModelSourceAccuracy /%
      AlexNet[16]Original93.65
      AlexNet[16]Skin segmented93.60
      AlexNet[16]Face84.28
      AlexNet[16]Hands89.52
      AlexNet[16]Face+hands86.68
      Inception V3[16]Original95.17
      Inception V3[16]Skin segmented94.57
      Inception V3[16]Face88.82
      Inception V3[16]Hands91.62
      Inception V3[16]Face+hands90.88
      ResNet50Original94.87
      S-Net(ResNet50)Original95.20
      T-Net(ResNet18)+S-Net(ResNet50)Original95.71
    Tools

    Get Citation

    Copy Citation Text

    Jinghui Chu, Shan Zhang, Wenhao Tang, Wei Lü. Driving Behavior Recognition Method Based on Tutor-Student Network[J]. Laser & Optoelectronics Progress, 2020, 57(6): 061019

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Sep. 11, 2019

    Accepted: Nov. 2, 2019

    Published Online: Mar. 6, 2020

    The Author Email: Wei Lü (luwei@tju.edu.cn)

    DOI:10.3788/LOP57.061019

    Topics