Laser & Optoelectronics Progress, Volume. 62, Issue 12, 1237012(2025)

Optimized Extreme Learning Machine for Color Difference Classification Based on Improved Black-Winged Kite Algorithm

Jiale Chen, Xiaobin Li*, and Haiyan Sun
Author Affiliations
  • School of Electrical and Electronic Engineering, Shanghai Institute of Technology, Shanghai 201418, China
  • show less
    Figures & Tables(22)
    f1(x) optimization curves
    f2(x) optimization curves
    f3(x) optimization curves
    f4(x) optimization curves
    Flowchart of the MBKA-ELM model
    Images of some kinds of fabrics
    Partial color difference classification results
    MBKA-ELM classification results
    BKA-ELM classification results
    PKO-ELM classification results
    CPO-ELM classification results
    PUMA-ELM classification results
    SO-ELM classification results
    Effect of maximum number of iterations on the algorithm
    Effect of population size on the algorithm
    • Table 1. Test functions

      View table

      Table 1. Test functions

      Test functionDimensionSearch scopeOptimal value
      f1(x)=i=1D-1100xi+1-xi22+xi-1230[-30,30]0
      f2(x)=i=1nxi+0.5230[-100,100]0
      f3(x)=-20exp-0.21di=1dxi2-exp1didcos2πxi+2030[-30,30]0
      f4(x)=14000i=1nxi2-i=1ncosxii+130[-500,500]0
    • Table 2. Optimization results of the six algorithms

      View table

      Table 2. Optimization results of the six algorithms

      FunctionMeasureMBKABKACPOPKOSOPUMA
      f1Best025.990229.0025226.509280.0008725.88323
      f1Stdv9.29×10-281.03444146.8906202.945512.07940.349169
      f1Ave2.87×10-2828.01717382.9408142.369321.191826.70203
      f1Mean028.59256606.985930.1364428.784226.76293
      f1Worst4.48×10-2728.994138066276855.081228.922127.37428
      f2Best00.3439785.9413010.0001020.003683.2×10-6
      f2Stdv8.94×10-301.3470391382.8760.0971860.577538.78×10-5
      f2Ave3.41×10-302.148931918.73350.0492110.826869.47×10-5
      f2Mean01.699957203.00640.0003970.76165.9×10-5
      f2Worst3.99×10-296.0274114766.3450.3668262.522360.000343
      f3Best000.0010065.71×10-500
      f3Stdv0011.101090.1231470.167290
      f3Ave006.239190.1118350.066340
      f3Mean002.151180.06385600
      f3Worst0059.143860.435110.677740
      f4Best1.57×10-320.018510.7009222.3×10-50.000923.6×10-7
      f4Stdv1.66×10-310.1817371155.2169.2102660.105701.13×10-5
      f4Ave7.81×10-320.101794232.72253.4132910.067308.84×10-6
      f4Mean2.27×10-320.0493434.3756690.1317850.016175.36×10-6
      f4Worst4.37×10-1213.424746.72×10-50.55330435.015590.761368
    • Table 3. Comparison of color differences

      View table

      Table 3. Comparison of color differences

      ΔEHuman eye perceptionLevel
      0‒0.5Infinitesimal1
      0.5‒1.5Slight2
      1.5‒3.0Obvious3
      3.0‒6.0Very obvious4
      >6.0Strong5
    • Table 4. Partial dataset

      View table

      Table 4. Partial dataset

      LevelΔEΔLΔaΔbΔHΔSΔV
      10.3766400.46490.31760.445900.0704080.0006770.007843
      43.3287100.99375.98252.397101.7230190.0553440.023529
      58.3498004.028712.99193.043306.4395420.0061960.019608
      517.24950017.815012.104011.202806.4123190.0840000.160784
      10.4695310.36970.02541.417801.0087340.0478550.003922
      31.6226310.12713.08821.040900.9324430.0173330.019608
      44.9881582.34288.67781.161902.2769810.0722350.019608
      45.7345760.73749.91341.054404.6255560.0024550.066667
      10.4171310.36680.00891.191100.8322630.0398230.003922
      21.3969671.87410.01110.528800.3565600.0266230.023529
      32.9534180.32294.42212.688003.6413870.0840000.019608
      21.4962661.79490.15692.868201.4331270.0728630.019608
      20.7875150.82951.02281.102600.5087340.0478550.003922
      32.9666870.68892.66906.330803.7883680.1042350.019608
      58.5678917.907811.92199.599202.3420670.2101180.019608
    • Table 5. Influence of hidden layer nodes on ELM

      View table

      Table 5. Influence of hidden layer nodes on ELM

      Number of neuronsAverage accuracy /%Training time /msPrediction time /ms
      548.960.990.91
      1059.4413.701.99
      1571.0830.961.51
      2075.0050.861.99
      2575.8454.272.01
      3079.2069.812.99
      3581.9675.793.98
      4082.8092.452.99
      4583.32124.663.98
      5085.80131.644.19
      10089.40424.138.99
      20092.32812.119.97
      30093.551412.9918.69
      40091.922105.6527.92
      50092.643062.0335.90
    • Table 6. Parameters of optimization algorithms

      View table

      Table 6. Parameters of optimization algorithms

      AlgorithmParameterValue
      MBKA, BKANumber of populations10
      Maximum number of iterations30
      p0.9
      PKONumber of populations10
      Maximum number of iterations30
      BF8
      PEmin0
      PEmax0.5
      CPONumber of populations10
      Maximum number of iterations30
      α0.2
      TF0.8
      PUMANumber of populations10
      Maximum number of iterations30
      PF[0.5 0.5 0.3]
      Mega_Explor, Mega_Exploit0.99
      SONumber of populations10
      Maximum number of iterations30
      vec_flag[-1,1]
      Threshold0.25
      C10.5
      C20.05
    • Table 7. Comparative experiments of different algorithms

      View table

      Table 7. Comparative experiments of different algorithms

      AlgorithmRunning time /sAccuracy /%
      ELM0.7285.3
      MBKA-ELM3.2298.4
      BKA-ELM4.3795.4
      PKO-ELM3.6196.1
      CPO-ELM1.2294.6
      PUMA-ELM1.8597.0
      SO-ELM2.0592.5
    Tools

    Get Citation

    Copy Citation Text

    Jiale Chen, Xiaobin Li, Haiyan Sun. Optimized Extreme Learning Machine for Color Difference Classification Based on Improved Black-Winged Kite Algorithm[J]. Laser & Optoelectronics Progress, 2025, 62(12): 1237012

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Nov. 21, 2024

    Accepted: Jan. 2, 2025

    Published Online: Jun. 25, 2025

    The Author Email: Xiaobin Li (lixiaobinauto@163.com)

    DOI:10.3788/LOP242304

    CSTR:32186.14.LOP242304

    Topics