Laser & Optoelectronics Progress, Volume. 56, Issue 5, 051004(2019)

Application of Deep Convolution Network Compression Algorithm in Weld Recognition

Meiju Liu and Bo Yun*
Author Affiliations
  • Information & Control Engineering Faculty, Shenyang Jianzhu University, Shenyang, Liaoning 110168, China
  • show less
    Figures & Tables(16)
    Weld recognition system[9]
    Schematic of convolution calculation
    Activation function images. (a) Sigmoid; (b) RELU
    Image acquisition device
    Convolution network structure used in experiments
    Making labels for weldment 1
    Computing result
    Recognition rate comparison among models
    Second weldment
    Label of weldment point
    Polygon diagram of mixed test results
    • Table 1. Network structure and hyper-parameter list

      View table

      Table 1. Network structure and hyper-parameter list

      Type of layersParameter
      Convolution+activation function+poolingC64(3×3,S=1)+RELU+Pmax(2×2,S=2)
      Convolution+activation function+poolingC128(3×3,S=1)+RELU+Pmax(2×2,S=2)
      Convolution+activation function+poolingC256(3×3,S=1)+RELU+Pavg(2×2,S=2)
      Convolution+activation function+poolingC512(3×3,S=1)+RELU+Pavg(2×2,S=2)
      Convolution+activation function+poolingC512(3×3,S=1)+RELU+Pavg(2×2,S=2)
      Full connetion+activation function400 neutral units+RELU
      Full connetion+activation function400 neutral units+RELU
      Loss functionEuclidean distance
    • Table 2. Model size and memory requirements

      View table

      Table 2. Model size and memory requirements

      Without compressionAfter compressionCompressionratioSpeed ratioLoss /%
      Maximum memoryrequirement /MBModelsize /MBMaximum memoryrequirement /MBModelsize /MB
      3855.31.12.3323.826.31.4
    • Table 3. Test accuracy of weldment 1

      View table

      Table 3. Test accuracy of weldment 1

      MethodAccuracy /%
      GS94.3
      SURF92.4
      HC90.1
      LSE87.6
      GH93.3
      GXN97.5
    • Table 4. Test results of multiple weldments

      View table

      Table 4. Test results of multiple weldments

      MethodAccuracy /%
      Secondweldment testMixeddata test
      GS93.390.1
      SURF94.489.6
      HC87.586.7
      LSE94.388.2
      GH91.290.1
      GXN96.796.3
    • Table 5. Time consumption of each method

      View table

      Table 5. Time consumption of each method

      MethodTime /ms
      GS35
      SURF27
      HC17
      LSE39
      GH37
      GXN36
    Tools

    Get Citation

    Copy Citation Text

    Meiju Liu, Bo Yun. Application of Deep Convolution Network Compression Algorithm in Weld Recognition[J]. Laser & Optoelectronics Progress, 2019, 56(5): 051004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Aug. 23, 2018

    Accepted: Sep. 26, 2018

    Published Online: Jul. 31, 2019

    The Author Email: Bo Yun (1287724534@qq.com)

    DOI:10.3788/LOP56.051004

    Topics