Journal of the Chinese Ceramic Society, Volume. 52, Issue 6, 1861(2024)

Research Progress on Anodic Oxygen Evolution Catalysts for Proton Exchange Membrane Water Electrolysis

CAO Xuejie, YANG Lei, XU Guangyu, and JIAO Lifang*
Author Affiliations
  • [in Chinese]
  • show less
    References(105)

    [1] [1] KIBSGAARD J, CHORKENDORFF I. Considerations for the scaling-up of water splitting catalysts[J]. Nat Energy, 2019, 4: 430-433.

    [2] [2] SONG Jie, DENG Zhanfeng, XU Guizhi, et al. Coal Sci Technol, 2022, 50(6): 136-144.

    [3] [3] MENG Zihan, XIONG Yifei, CHEN Yuanxin, et al. J Chin Ceram Soc, 2023, 51(9): 2334-2348.

    [4] [4] LIU Wei, WAN Yanming, XIONG Yalin, et al. Trans China Electrotech Soc, 2022, 37(11): 2888-2896.

    [5] [5] LIN Y C, DONG Y, WANG X Z, et al. Electrocatalysts for the oxygen evolution reaction in acidic media[J]. Adv Mater, 2023, 35(22): e2210565.

    [6] [6] AN L, WEI C, LU M, et al. Recent development of oxygen evolution electrocatalysts in acidic environment[J]. Adv Mater, 2021, 33(20): e2006328.

    [7] [7] WANG Q L, CHENG Y Q, TAO H B, et al. Long-term stability challenges and opportunities in acidic oxygen evolution electrocatalysis[J]. Angew Chem, 2023, 135(11): 2216645.

    [8] [8] MARSHALL A, B?RRESEN B, HAGEN G, et al. Hydrogen production by advanced proton exchange membrane (PEM) water electrolysers-Reduced energy consumption by improved electrocatalysis[J]. Energy, 32:431-436.

    [9] [9] WANG Peican, WAN Lei, XU Zi-ang, et al. Hydrogen production based-on anion exchange membrane water electrolysis: a critical review and perspective[J]. CIESC Journal, 2021, 72(12): 61616175.

    [10] [10] ZHANG W Z, LIU M H, GU X, et al. Water electrolysis toward elevated temperature: Advances, challenges and frontiers[J]. Chem Rev, 2023, 123(11): 7119-7192.

    [11] [11] MI Wanliang, RONG Junfeng. Petrol Process Petrochem, 2021, 52(10): 78-87.

    [12] [12] CHEREVKO S, ZERADJANIN A R, TOPALOV A A, et al. Dissolution of noble metals during oxygen evolution in acidic media[J]. ChemCatChem, 2014, 6(8): 2219-2223.

    [13] [13] FU L H, ZENG X, HUANG C Z, et al. Ultrasmall Ir nanoparticles for efficient acidic electrochemical water splitting[J]. Inorg Chem Front, 2018, 5(5): 1121-1125.

    [14] [14] JIANG B, GUO Y N, KIM J, et al. Mesoporous metallic iridium nanosheets[J]. J Am Chem Soc, 2018, 140(39): 12434-12441.

    [15] [15] HALDER A, LIU C, LIU Z, et al. Water oxidation catalysis via size-selected iridium clusters[J]. J Phys Chem C, 2018, 122(18): 9965-9972.

    [16] [16] BAO X B, LI S J, HAO C T, et al. Iridium nanohollows with porous walls for acidic water splitting[J]. J Mater Chem A, 2022, 10(37): 20005-20010.

    [17] [17] XUE Q, GAO W, ZHU J Y, et al. Carbon nanobowls supported ultrafine iridium nanocrystals: An active and stable electrocatalyst for the oxygen evolution reaction in acidic media[J]. J Colloid Interface Sci, 2018, 529: 325-331.

    [18] [18] VELASCO-VéLEZ J J, JONES T E, STREIBEL V, et al. Electrochemically active Ir NPs on graphene for OER in acidic aqueous electrolyte investigated by in situ and ex situ spectroscopies[J]. Surf Sci, 2019, 681: 1-8.

    [19] [19] JIANG B B, WANG T, CHENG Y F, et al. Ir/g-C3N4/nitrogen-doped graphene nanocomposites as bifunctional electrocatalysts for overall water splitting in acidic electrolytes[J]. ACS Appl Mater Interfaces, 2018, 10(45): 39161-39167.

    [20] [20] ZHANG J, WANG G, LIAO Z Q, et al. Iridium nanoparticles anchored on 3D graphite foam as a bifunctional electrocatalyst for excellent overall water splitting in acidic solution[J]. Nano Energy, 2017, 40: 27-33.

    [21] [21] SHI Z P, LI J, JIANG J D, et al. Enhanced acidic water oxidation by dynamic migration of oxygen species at the Ir/Nb2O5-x catalyst/support interfaces[J]. Angew Chem Int Ed Engl, 2022, 61(52): e202212341.

    [22] [22] VAN DER MERWE M, GARCIA-DIEZ R, LAHN L, et al. The chemical and electronic properties of stability-enhanced, mixed Ir-TiOx oxygen evolution reaction catalysts[J]. ACS Catal, 2023, 13(23): 15427-15438.

    [23] [23] BELE M, STOJANOVSKI K, JOVANOVI? P, et al. Towards stable and conductive titanium oxynitride high-surface-area support for iridium nanoparticles as oxygen evolution reaction electrocatalyst[J]. ChemCatChem, 2019, 11(20): 5038-5044.

    [24] [24] HUANG R, WEN Y Z, MIAO P, et al. Constructing the oxygen diffusion paths for promoting the stability of acidic water oxidation catalysts[J]. Chem Catal, 2023, 3(7): 100667.

    [25] [25] LEE C, SHIN K, PARK Y, et al. Catalyst-support interactions in Zr2ON2-supported IrOx electrocatalysts to break the trade-off relationship between the activity and stability in the acidic oxygen evolution reaction[J]. Adv Funct Materials, 2023, 33(25): 2301557.

    [26] [26] LIU X H, XI S B, KIM H, et al. Restructuring highly electron-deficient metal-metal oxides for boosting stability in acidic oxygen evolution reaction[J]. Nat Commun, 2021, 12(1): 5676.

    [27] [27] ALI KHAN I, MORGEN P, GYERGYEK S, et al. Reduced valence state of iridium supported on antimony doped tin oxide as a highly active and robust oxygen evolution reaction electrocatalyst for proton exchange membrane-based electrolysis[J]. Appl Surf Sci, 2024, 646: 158924.

    [28] [28] GOLLASCH M, SCHMELING J, HARMS C, et al. Comparative analysis of synthesis routes for antimony-doped tin oxide-supported iridium and iridium oxide catalysts for OER in PEM water electrolysis[J]. Adv Materials Inter, 2023, 10(15): 2300036.

    [29] [29] LUO F, HU H, ZHAO X, et al. Robust and stable acidic overall water splitting on Ir single atoms[J]. Nano Lett, 2020, 20(3): 2120-2128.

    [30] [30] SU H, ZHOU W L, ZHOU W, et al. In-situ spectroscopic observation of dynamic-coupling oxygen on atomically dispersed iridium electrocatalyst for acidic water oxidation[J]. Nat Commun, 2021, 12(1): 6118.

    [31] [31] ZHANG X X, YANG C Y, GONG C, et al. Fast modulation of d-band holes quantity in the early reaction stages for boosting acidic oxygen evolution[J]. Angew Chem Int Ed Engl, 2023, 62(33): e202308082.

    [32] [32] SHAN J Q, YE C, CHEN S M, et al. Short-range ordered iridium single atoms integrated into cobalt oxide spinel structure for highly efficient electrocatalytic water oxidation[J]. J Am Chem Soc, 2021, 143(13): 5201-5211.

    [33] [33] ZHU Y M, WANG J A, KOKETSU T, et al. Iridium single atoms incorporated in Co3O4 efficiently catalyze the oxygen evolution in acidic conditions[J]. Nat Commun, 2022, 13(1): 7754.

    [34] [34] LIU D, LV Q Q, LU S Q, et al. IrCuNi deeply concave nanocubes as highly active oxygen evolution reaction electrocatalyst in acid electrolyte[J]. Nano Lett, 2021, 21(7): 2809-2816.

    [35] [35] FENG J R, LV F, ZHANG W Y, et al. Iridium-based multimetallic porous hollow nanocrystals for efficient overall-water-splitting catalysis[J]. Adv Mater, 2017, 29(47): 1703798.

    [36] [36] ZHAO Y, LUO M, CHU S F, et al. 3D nanoporous iridium-based alloy microwires for efficient oxygen evolution in acidic media[J]. Nano Energy, 2019, 59: 146-153.

    [37] [37] FU L H, ZENG X, CHENG G Z, et al. IrCo nanodendrite as an efficient bifunctional electrocatalyst for overall water splitting under acidic conditions[J]. ACS Appl Mater Interfaces, 2018, 10(30): 24993-24998.

    [38] [38] FU L H, CHENG G Z, LUO W. Colloidal synthesis of monodisperse trimetallic IrNiFe nanoparticles as highly active bifunctional electrocatalysts for acidic overall water splitting[J]. J Mater Chem A, 2017, 5(47): 24836-24841.

    [39] [39] JIN H, HONG Y J, YOON J, et al. Lanthanide metal-assisted synthesis of rhombic dodecahedral MNi (M = Ir and Pt) nanoframes toward efficient oxygen evolution catalysis[J]. Nano Energy, 2017, 42: 17-25.

    [40] [40] PI Y C, SHAO Q, ZHU X, et al. Dynamic structure evolution of composition segregated iridium-nickel rhombic dodecahedra toward efficient oxygen evolution electrocatalysis[J]. ACS Nano, 2018, 12(7): 7371-7379.

    [41] [41] ALIA S M, SHULDA S, NGO C, et al. Iridium-based nanowires as highly active, oxygen evolution reaction electrocatalysts[J]. ACS Catal, 2018, 8(3): 2111-2120.

    [42] [42] FU L H, CAI P, CHENG G Z, et al. Colloidal synthesis of iridium-iron nanoparticles for electrocatalytic oxygen evolution[J]. Sustainable Energy Fuels, 2017, 1(5): 1199-1203.

    [43] [43] SHI Q R, ZHU C Z, DU D, et al. Ultrathin dendritic IrTe nanotubes for an efficient oxygen evolution reaction in a wide pH range[J]. J Mater Chem A, 2018, 6(19): 8855-8859.

    [44] [44] ZHANG T, LIAO S A, DAI L X, et al. Ir-Pd nanoalloys with enhanced surface-microstructure-sensitive catalytic activity for oxygen evolution reaction in acidic and alkaline media[J]. Sci China Mater, 2018, 61(7): 926-938.

    [45] [45] ZHU J W, LYU Z H, CHEN Z T, et al. Facile synthesis and characterization of Pd@IrnL (n = 1-4) core-shell nanocubes for highly efficient oxygen evolution in acidic media[J]. Chem Mater, 2019, 31(15): 5867-5875.

    [46] [46] KWON T, HWANG H, SA Y J, et al. Cobalt assisted synthesis of IrCu hollow octahedral nanocages as highly active electrocatalysts toward oxygen evolution reaction[J]. Adv Funct Materials, 2017, 27(7): 1604688.

    [47] [47] FU L H, HU X, LI Y B, et al. IrW nanobranches as an advanced electrocatalyst for pH-universal overall water splitting[J]. Nanoscale, 2019, 11(18): 8898-8905.

    [48] [48] ZHU J W, XIE M H, CHEN Z T, et al. Pt-Ir-Pd trimetallic nanocages as a dual catalyst for efficient oxygen reduction and evolution reactions in acidic media[J]. Adv Energy Mater, 2020, 10(16): 1904114.

    [49] [49] KWON J, SUN S, CHOI S, et al. Tailored electronic structure of Ir in high entropy alloy for highly active and durable bifunctional electrocatalyst for water splitting under an acidic environment[J]. Adv Mater, 2023, 35(26): e2300091.

    [50] [50] MAULANA A L, CHEN P C, SHI Z X, et al. Understanding the structural evolution of IrFeCoNiCu high-entropy alloy nanoparticles under the acidic oxygen evolution reaction[J]. Nano Lett, 2023, 23(14): 6637-6644.

    [51] [51] CHEREVKO S, GEIGER S, KASIAN O, et al. Oxygen evolution activity and stability of iridium in acidic media. Part 1.-Metallic iridium[J]. J Electroanal Chem, 2016, 773: 69-78.

    [52] [52] ZHUANG Z W, WANG Y, XU C Q, et al. Three-dimensional open nano-netcage electrocatalysts for efficient pH-universal overall water splitting[J]. Nat Commun, 2019, 10(1): 4875.

    [53] [53] HU C, YUE K H, HAN J J, et al. Misoriented high-entropy iridium ruthenium oxide for acidic water splitting[J]. Sci Adv, 2023, 9(37): 9144.

    [54] [54] ZHU W X, SONG X C, LIAO F, et al. Stable and oxidative charged Ru enhance the acidic oxygen evolution reaction activity in two-dimensional ruthenium-iridium oxide[J]. Nat Commun, 2023, 14(1): 5365.

    [55] [55] LI L M, CHENG Z F, SU J Q, et al. One-dimensional amorphous porous iridium-ruthenium oxide for efficient acidic oxygen evolution reaction[J]. J Mater Chem A, 2023, 11(46): 25268-25274.

    [56] [56] HE J, ZHOU X, XU P, et al. Regulating electron redistribution of intermetallic iridium oxide by incorporating Ru for efficient acidic water oxidation[J]. Adv Energy Mater, 2021, 11(48): 2102883.

    [57] [57] ZHAO F, WEN B, NIU W H, et al. Increasing iridium oxide activity for the oxygen evolution reaction with hafnium modification[J]. J Am Chem Soc, 2021, 143(38): 15616-15623.

    [58] [58] WANG Y B, MA R P, SHI Z P, et al. Inverse doping IrOx/Ti with weakened Ir-O interaction toward stable and efficient acidic oxygen evolution[J]. Chem, 2023, 9(10): 2931-2942.

    [59] [59] ZHENG Y R, VERNIERES J, WANG Z B, et al. Monitoring oxygen production on mass-selected iridium-tantalum oxide electrocatalysts[J]. Nat Energy, 2021, 7(1): 55-64.

    [60] [60] WEN Y Z, LIU C, HUANG R, et al. Introducing Br?nsted acid sites to accelerate the bridging-oxygen-assisted deprotonation in acidic water oxidation[J]. Nat Commun, 2022, 13(1): 4871.

    [61] [61] SP?RI C, FALLING L J, KROSCHEL M, et al. Molecular analysis of the unusual stability of an IrNbOx catalyst for the electrochemical water oxidation to molecular oxygen (OER)[J]. ACS Appl Mater Interfaces, 2021, 13(3): 3748-3761.

    [62] [62] HAO S Y, SHENG H Y, LIU M, et al. Torsion strained iridium oxide for efficient acidic water oxidation in proton exchange membrane electrolyzers[J]. Nat Nanotechnol, 2021, 16(12): 1371-1377.

    [63] [63] WANG Y N, ZHANG M C, KANG Z Y, et al. Nano-metal diborides-supported anode catalyst with strongly coupled TaOx/IrO2 catalytic layer for low-iridium-loading proton exchange membrane electrolyzer[J]. Nat Commun, 2023, 14(1): 5119.

    [64] [64] HARTIG-WEISS A, MILLER M, BEYER H, et al. Iridium oxide catalyst supported on antimony-doped tin oxide for high oxygen evolution reaction activity in acidic media[J]. ACS Appl Nano Mater, 2020, 3(3): 2185-2196.

    [65] [65] DIAZ-MORALES O, RAAIJMAN S, KORTLEVER R, et al. Iridium-based double perovskites for efficient water oxidation in acid media[J]. Nat Commun, 2016, 7: 12363.

    [66] [66] LIANG X, YAN W S, YU Y L, et al. Electrocatalytic water oxidation activity-stability maps for perovskite oxides containing 3d, 4d and 5d transition metals[J]. Angew Chem Int Ed Engl, 2023, 62(46): e202311606.

    [67] [67] YAO Y C, HU S L, CHEN W X, et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis[J]. Nat Catal, 2019, 2(4): 304-313.

    [68] [68] HAO Y X, HUNG S F, ZENG W J, et al. Switching the oxygen evolution mechanism on atomically dispersed Ru for enhanced acidic reaction kinetics[J]. J Am Chem Soc, 2023, 145(43): 23659-23669.

    [69] [69] BAI X F, ZHANG X P, SUN Y J, et al. Low ruthenium content confined on boron carbon nitride as an efficient and stable electrocatalyst for acidic oxygen evolution reaction[J]. Angew Chem Int Ed Engl, 2023, 62(38): e202308704.

    [70] [70] FORGIE R, BUGOSH G, NEYERLIN K C, et al. Bimetallic Ru electrocatalysts for the OER and electrolytic water splitting in acidic media[J]. Electrochem Solid-State Lett, 2010, 13(4): B36.

    [71] [71] AN L, YANG F, FU C H, et al. A functionally stable RuMn electrocatalyst for oxygen evolution reaction in acid[J]. Adv Funct Materials, 2022, 32(27): 2200131.

    [72] [72] SHAN J Q, GUO C X, ZHU Y H, et al. Charge-redistribution-enhanced nanocrystalline Ru@IrOx electrocatalysts for oxygen evolution in acidic media[J]. Chem, 2019, 5(2): 445-459.

    [73] [73] DANILOVIC N, SUBBARAMAN R, CHANG K C, et al. Using surface segregation to design stable Ru-Ir oxides for the oxygen evolution reaction in acidic environments[J]. Angew Chem Int Ed Engl, 2014, 53(51): 14016-14021.

    [74] [74] HODNIK N, JOVANOVI? P, PAVLI?I? A, et al. New insights into corrosion of ruthenium and ruthenium oxide nanoparticles in acidic media[J]. J Phys Chem C, 2015, 119(18): 10140-10147.

    [75] [75] SUN S C, JIANG H, CHEN Z Y, et al. Bifunctional WC-supported RuO2 nanoparticles for robust water splitting in acidic media[J]. Angew Chem Int Ed Engl, 2022, 61(21): e202202519.

    [76] [76] LIN C, LI J L, LI X P, et al. In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation[J]. Nat Catal, 2021, 4: 1012-1023.

    [77] [77] WEN Y Z, CHEN P N, WANG L, et al. Stabilizing highly active Ru sites by suppressing lattice oxygen participation in acidic water oxidation[J]. J Am Chem Soc, 2021, 143(17): 6482-6490.

    [78] [78] WU Z Y, CHEN F Y, LI B Y, et al. Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis[J]. Nat Mater, 2023, 22(1): 100-108.

    [79] [79] QIN Y, YU T T, DENG S H, et al. RuO2 electronic structure and lattice strain dual engineering for enhanced acidic oxygen evolution reaction performance[J]. Nat Commun, 2022, 13(1): 3784.

    [80] [80] LIU H, ZHANG Z, FANG J J, et al. Eliminating over-oxidation of ruthenium oxides by niobium for highly stable electrocatalytic oxygen evolution in acidic media[J]. Joule, 2023, 7(3): 558-573.

    [81] [81] LI L, ZHANG G W, XU J W, et al. Optimizing the electronic structure of ruthenium oxide by neodymium doping for enhanced acidic oxygen evolution catalysis[J]. Adv Funct Materials, 2023, 33(10): 2213304.

    [82] [82] HE J, LI W Q, XU P, et al. Tuning electron correlations of RuO2 by co-doping of Mo and Ce for boosting electrocatalytic water oxidation in acidic media[J]. Appl Catal B Environ, 2021, 298: 120528.

    [83] [83] WANG X F, JANG H, LIU S G, et al. Enhancing the catalytic kinetics and stability of Ru sites for acidic water oxidation by forming Br?nsted acid sites in tungsten oxide matrix[J]. Adv Energy Mater, 2023, 13(36): 2301673.

    [84] [84] CHEN S, HUANG H, JIANG P, et al. Mn-doped RuO2 nanocrystals as highly active electrocatalysts for enhanced oxygen evolution in acidic media[J]. ACS Catal, 2020, 10(2): 1152-1160.

    [85] [85] LI L, ZHOU J, WANG X, et al. Spin-polarization strategy for enhanced acidic oxygen evolution activity[J]. Adv Mater, 2023, 35(35): e2302966.

    [86] [86] JIN H Y, LIU X Y, AN P F, et al. Dynamic rhenium dopant boosts ruthenium oxide for durable oxygen evolution[J]. Nat Commun, 2023, 14(1): 354.

    [87] [87] WANG Y, YANG R, DING Y J, et al. Unraveling oxygen vacancy site mechanism of Rh-doped RuO2 catalyst for long-lasting acidic water oxidation[J]. Nat Commun, 2023, 14(1): 1412.

    [88] [88] WANG J, YANG H, LI F, et al. Single-site Pt-doped RuO2 hollow nanospheres with interstitial C for high-performance acidic overall water splitting[J]. Sci Adv, 2022, 8(9): 9271.

    [89] [89] ZHANG D F, LI M N, YONG X, et al. Construction of Zn-doped RuO2 nanowires for efficient and stable water oxidation in acidic media[J]. Nat Commun, 2023, 14(1): 2517.

    [90] [90] HOU L Q, LI Z J, JANG H, et al. Electronic and lattice engineering of ruthenium oxide towards highly active and stable water splitting[J]. Adv Energy Mater, 2023, 13(22): 2300177.

    [91] [91] LEE K, SHIM J, JANG H Y, et al. Modulating the valence electronic structure using earth-abundant aluminum for high-performance acidic oxygen evolution reaction[J]. Chem, 2023, 9(12): 3600-3612.

    [92] [92] WANG Y, LEI X, ZHANG B, et al. Breaking the Ru-O-Ru symmetry of a RuO2 catalyst for sustainable acidic water oxidation[J]. Angew Chem Int Ed, 2024, 63(3): e202316903.

    [93] [93] QIU L S, ZHENG G K, HE Y, et al. Ultra-small Sn-RuO2 nanoparticles supported on N-doped carbon polyhedra for highly active and durable oxygen evolution reaction in acidic media[J]. Chem Eng J, 2021, 409: 128155.

    [94] [94] XUE Y R, ZHAO J W, HUANG L, et al. Stabilizing ruthenium dioxide with cation-anchored sulfate for durable oxygen evolution in proton-exchange membrane water electrolyzers[J]. Nat Commun, 2023, 14(1): 8093.

    [95] [95] SHI Z P, LI J, WANG Y B, et al. Customized reaction route for ruthenium oxide towards stabilized water oxidation in high-performance PEM electrolyzers[J]. Nat Commun, 2023, 14(1): 843.

    [96] [96] LIN Y C, TIAN Z Q, ZHANG L J, et al. Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media[J]. Nat Commun, 2019, 10(1): 162.

    [97] [97] WANG K X, WANG Y L, YANG B, et al. Highly active ruthenium sites stabilized by modulating electron-feeding for sustainable acidic oxygen-evolution electrocatalysis[J]. Energy Environ Sci, 2022, 15(6): 2356-2365.

    [98] [98] FENG Q, WANG Q, ZHANG Z, et al. Highly active and stable ruthenate pyrochlore for enhanced oxygen evolution reaction in acidic medium electrolysis[J]. Appl Catal B Environ, 2019, 244: 494-501.

    [99] [99] FENG Q, ZHANG Z, HUANG H H, et al. An effective strategy to tune the oxygen vacancy of pyrochlore oxides for electrochemical energy storage and conversion systems[J]. Chem Eng J, 2020, 395: 124428.

    [100] [100] FENG Q, ZHAO Z L, YUAN X Z, et al. Oxygen vacancy engineering of yttrium ruthenate pyrochlores as an efficient oxygen catalyst for both proton exchange membrane water electrolyzers and rechargeable zinc-air batteries[J]. Appl Catal B Environ, 2020, 260: 118176.

    [101] [101] ZHANG Q R, LIU T T, GUO H Y, et al. Lead-induced microstrain in synthesis and manipulation of porous pyrochlore for boosting oxygen evolution reaction[J]. Adv Funct Materials, 2024, 34(3): 2306176.

    [102] [102] RODRíGUEZ-GARCíA I, GALYAMIN D, PASCUAL L, et al. Enhanced stability of SrRuO3 mixed oxide via monovalent doping in Sr1-xKxRuO3 for the oxygen evolution reaction[J]. J Power Sources, 2022, 521: 230950.

    [103] [103] RETUERTO M, PASCUAL L, CALLE-VALLEJO F, et al. Na-doped ruthenium perovskite electrocatalysts with improved oxygen evolution activity and durability in acidic media[J]. Nat Commun, 2019, 10(1): 2041.

    [104] [104] MIAO X B, ZHANG L F, WU L, et al. Quadruple perovskite ruthenate as a highly efficient catalyst for acidic water oxidation[J]. Nat Commun, 2019, 10(1): 3809.

    [105] [105] Jones, D. A. Principles and Prevention of Corrosion 2nd Edition [M]. Upper Saddle River: Prentice-Hall, 1996: 50-52

    Tools

    Get Citation

    Copy Citation Text

    CAO Xuejie, YANG Lei, XU Guangyu, JIAO Lifang. Research Progress on Anodic Oxygen Evolution Catalysts for Proton Exchange Membrane Water Electrolysis[J]. Journal of the Chinese Ceramic Society, 2024, 52(6): 1861

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Jan. 11, 2024

    Accepted: --

    Published Online: Aug. 26, 2024

    The Author Email: JIAO Lifang (jiaolf@nankai.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20240019

    Topics