High Power Laser and Particle Beams, Volume. 35, Issue 11, 114005(2023)

Measurement of transverse phase space based on machine learning

Yutao Han1, Renkai Li2, and Weishi Wan1
Author Affiliations
  • 1School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
  • 2Department of Engineering Physics, Tsinghua University, Beijing 100084, China
  • show less
    Figures & Tables(14)
    Flow chart of hybrid domain processing
    Diagram of Residual U-Net architecture
    Layout of tomography section
    Function diagram of focusing parameterk and rotation angle
    A TPS distribution and its normalized TPS distribution
    Rotation angles corresponding to different sampling methods
    Sinograms using different sampling methods
    Two laser spot with details
    An example of the interpolation network results in the form of sinogram
    An example of the interpolation network results in the form of tomography
    Uniform K value sampling and its interpolation
    Examples of the results from removing artifacts network
    • Table 1. Residual U-Net network parameter settings

      View table
      View in Article

      Table 1. Residual U-Net network parameter settings

      nameparametersoutput
      Conv_block_11 $ \times $1 conv, 64 200 $ \times $57, 64
      3 $ \times $3 conv, 64
      Conv_block_22 $ \times $3 conv, s=2, p=0, 64 100 $ \times $28, 64
      [3 $ \times $3 conv, 64] $ \times $2
      Conv_block_32 $ \times $2 conv, s=2, p=0, 64 50 $ \times $14, 64
      [3 $ \times $3 conv, 64] $ \times $2
      Conv_block_42 $ \times $2 conv, s=2, p=0, 64 25 $ \times $7, 64
      [3 $ \times $3 conv, 64] $ \times $2
      ConvT_block_1$2 \times 2$ convT, s=2, p=0, 64 50 $ \times $14, 64
      ConvT_block_2Conv_block_3, concatenation100 $ \times $28, 64
      [ $3 \times 3$ conv,64] $ \times $2
      $2 \times 2$ convT, s=2, p=0, 64
      ConvT_block_3Conv_block_2, concatenation200 $ \times $57, 64
      [ $3 \times 3$ conv, 64] $ \times $2
      $2 \times 3$ convT, s=2, p=0, 64
      Conv_block_5Conv_block_1, concatenation200 $ \times $57, 1
      $3 \times 3$ conv,16
      $3 \times 3$ conv, 1
      shortcut connection
    • Table 2. RED-CNN network parameter settings

      View table
      View in Article

      Table 2. RED-CNN network parameter settings

      nameparametersoutput
      Conv_1[5, Conv, 16] $ \times $2 192 $ \times $192, 16
      Conv_2[5, Conv, 16] $ \times $2 184 $ \times $184, 16
      Conv_3[5, Conv, 16] $ \times $2 176 $ \times $176, 16
      ConvT_1[5, ConvT, 16] $ \times $2 184 $ \times $184, 16
      ConvT_2Conv_2, addition192 $ \times $192, 16
      [5, convT, 16] $ \times $2
      ConvT_3Conv_1, addition200 $ \times $200, 1
      [5, convT1, 1] $ \times $2
      shortcut connection
    Tools

    Get Citation

    Copy Citation Text

    Yutao Han, Renkai Li, Weishi Wan. Measurement of transverse phase space based on machine learning[J]. High Power Laser and Particle Beams, 2023, 35(11): 114005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 4, 2023

    Accepted: Oct. 19, 2023

    Published Online: Dec. 26, 2023

    The Author Email:

    DOI:10.11884/HPLPB202335.230074

    Topics