Acta Optica Sinica, Volume. 41, Issue 13, 1306012(2021)
Method for Rayleigh Scattering Spectral Demodulation Based on Artificial Neural Network
[1] Cai H W, Ye Q, Wang Z Y et al. Distributed optical fiber acoustic sensing technology based on coherent Rayleigh scattering[J]. Laser & Optoelectronics Progress, 57, 050001(2020).
[2] He Z Y, Liu Q W. Optical fiber distributed acoustic sensors: a review[J]. Journal of Lightwave Technology, 39, 3671-3686(2021).
[3] Wang C, Liu Q W, Chen D et al. Monitoring pipeline leakage using fiber-optic distributed acoustic sensor[J]. Acta Optica Sinica, 39, 1006005(2019).
[4] Ma H Y, Wang X X, Ma F et al. Research progress of Φ-OTDR distributed optical fiber acoustic sensor[J]. Laser & Optoelectronics Progress, 57, 130005(2020).
[5] Lin R B, Zeng X F, Song Z H et al. Distributed acoustic sensing for imaging shallow structure II: ambient noise tomography[J]. Chinese Journal of Geophysics, 63, 1622-1629(2020).
[6] Wu T, Yang C Y, Shang J C et al. Influences of correlation parameter errors on accurate measurement of gas temperature based on spontaneous Rayleigh-Brillouin scattering[J]. Acta Optica Sinica, 39, 0912006(2019).
[7] Koyamada Y, Imahama M, Kubota K et al. Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR[J]. Journal of Lightwave Technology, 27, 1142-1146(2009).
[8] Liehr S, Münzenberger S, Krebber K. Wavelength-scanning coherent OTDR for dynamic high strain resolution sensing[J]. Optics Express, 26, 10573-10588(2018).
[9] Wang Y F, Liu Q W, Chen D et al. Distributed fiber-optic dynamic-strain sensor with sub-meter spatial resolution and single-shot measurement[J]. IEEE Photonics Journal, 11, 1-8(2019).
[10] Pastor-Graells J, Martins H F, Garcia-Ruiz A et al. Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses[J]. Optics Express, 24, 13121-13133(2016).
[11] Azad A K, Wang L, Guo N et al. Temperature sensing in BOTDA system by using artificial neural network[J]. Electronics Letters, 51, 1578-1580(2015).
[12] Abbasnezhad M, Alizadeh B. FPGA-based implementation of an artificial neural network for measurement acceleration in BOTDA sensors[J]. IEEE Transactions on Instrumentation and Measurement, 68, 4326-4334(2019).
[13] Zhang Y F, Yu L, Hu Z L et al. Ultrafast and accurate temperature extraction via kernel extreme learning machine for BOTDA sensors[J]. Journal of Lightwave Technology, 39, 1537-1543(2021).
[14] Sidhishwari S, Basu M, Ghorai S K. A modal interference-based fiber optic sensor for dual parameter measurement using an artificial neural network[J]. Optical Fiber Technology, 50, 216-224(2019).
[15] Liu Q W, Fan X Y, He Z Y. Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range[J]. Optics Express, 23, 25988-25995(2015).
[16] Azad A K, Wang L, Guo N et al. Temperature profile extraction using artificial neural network in BOTDA sensor system[C]∥2015 Opto-Electronics and Communications Conference (OECC), June 28-July 2, 2015, Shanghai, China., 1-3(2015).
[17] Li H, Liu Q W, Chen D et al. Centimeter spatial resolution distributed temperature sensor based on polarization-sensitive optical frequency domain reflectometry[J]. Journal of Lightwave Technology, 39, 2594-2602(2021).
Get Citation
Copy Citation Text
Yifan Wang, Qingwen Liu, Zuyuan He. Method for Rayleigh Scattering Spectral Demodulation Based on Artificial Neural Network[J]. Acta Optica Sinica, 2021, 41(13): 1306012
Category: Fiber Optics and Optical Communications
Received: Mar. 23, 2021
Accepted: Jun. 1, 2021
Published Online: Jul. 11, 2021
The Author Email: Liu Qingwen (liuqingwen@sjtu.edu.cn), He Zuyuan (zuyuanhe@sjtu.edu.cn)