Chinese Journal of Lasers, Volume. 36, Issue 7, 1619(2009)
Deep-Ultraviolet Diode-Pumped Solid-State Laser
[1] [1] H. J. Bey. Deep-UV applications await improved nonlinear optics[J]. Laser Focus World, 1998, 34(8): 127
[2] [2] Chuangtian Chen, Yebin Wang, Younan Xia et al.. New development of nonlinear optical crystals for the ultraviolet region with molecular engineering approach[J]. J. Appl. Phys., 1994, 77(6): 2268~2272
[3] [3] F. Seifert, J. Ringling, F. Noack et al.. Generation of tunable femtosecond pulses to as low as 172.7 nm by sum-frequency mixing in lithium triborate[J]. Opt. Lett., 1994, 19(19): 1538~1540
[4] [4] T. Kasamatsu, M. Tsunekane, H. Sekita et al.. 1 pm spectrally narrowed ArF excimer laser injection locked by fourth harmonic seed source of 773.6 nm Ti∶sapphire laser[J]. Appl. Phys. Lett., 1995, 67(23): 3396~3398
[5] [5] Chuangtian Chen, Zuyan Xu, Daoqun Deng et al.. The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal[J]. Appl. Phys. Lett., 1996, 68(21): 2930~2932
[6] [6] Chuangtian Chen, Guiling Wang, Xiaoyang Wang et al.. Improved sellmeier equations and phase-matching characteristics in deep-ultraviolet region of KBe2BO3F2 crystal[J]. IEEE J. Quantum Electron., 2008, 44(7): 617~620
[8] [8] C. T. Chen, Z. Y. Xu, J. H. Lü et al.. Prism-nonlinear optical crystal coupler for laser frequency conversion[P]. US 6,859,305 B2
[11] [11] G. L. Wang, X. Y. Wang, Y. Zhou et al.. 12.95 mW sixth harmonic generation with KBe2BO3F2 crystal[J]. Appl. Phys. B, 2008, 91(1): 95~97
[12] [12] H. B. Zhang, G. L. Wang, L. Guo et al.. 175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal[J]. Appl. Phys. B, 2008, 93(2~3): 323~326
[13] [13] Xin Zhang, Zhimin Wang, Guiling Wang et al.. Widely-tunable and high-average-power fourth harmonic generation of a Ti:sapphire laser with a KBe2BO3F2 prism-coupled device[J]. Opt. Lett., 2008, 34(9): 1342~1344
[14] [14] Guodong Liu, Guiling Wang, Yong Zhu et al.. Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV[J]. Rev. Sci. Instrum., 2008, 79: 023105
[15] [15] Wentao Zhang, Guodong Liu, Lin Zhao et al.. Identification of a new form of electron coupling in the Bi2Sr2CaCu2O8 superconductor by laser-based angle-resolved photoemission spectroscopy[J]. Phys. Rev. Lett., 2008, 100:107002
[16] [16] Haiyun Liu, Guodong Liu, Wentao Zhang et al.. Identification of nodal kink in electron-doped (Nd1.85Ce0.15)CuO4 superconductor from laser-based angle-resolved photoemission spectroscopy[J]. Cond-mat, 2008, 0808.0802v
[17] [17] Wentao Zhang, Guodong Liu, Jianqiao Meng et al.. High energy dispersion relations for the high temperature Bi2Sr2CaCu2O8 superconductor from laser-based angle-resolved photoemission spectroscopy[J]. Phys. Rev. Lett., 2008, 101: 017002
[18] [18] Jianqiao Meng, Wentao Zhang, Guodong Liu et al.. Monotonic d-wave superconducting gap in optimally-doped Bi2Sr1.6La0.4CuO6 superconductor by laser-based angle-resolved photoemission spectroscopy[J]. Phys. Rev. B, 2009, 79: 024514
Get Citation
Copy Citation Text
Xu Zuyan. Deep-Ultraviolet Diode-Pumped Solid-State Laser[J]. Chinese Journal of Lasers, 2009, 36(7): 1619