Chinese Journal of Lasers, Volume. 52, Issue 8, 0802301(2025)

Deep Learning‐Based Recognition Method for Powder Spreading State in Additive Manufacturing

Mingyi Zuo1,3, Hongxuan Guo2, and Huaixue Li3、*
Author Affiliations
  • 1College of Software Engineering, Southeast University, Nanjing 210018, Jiangsu , China
  • 2School of Integrated Circuits, Southeast University, Nanjing 210018, Jiangsu , China
  • 3Aeronautical Science and Technology Key Laboratory of Additive Manufacturing, AVIC Manufacturing Technology Institute, Beijing 100192, China
  • show less
    Figures & Tables(13)
    Overall task flowchart
    Image examples under different states. (a) Normal; (b) scratch; (c) uneven powder coating; (d) insufficient powder coating; (e) excessive powder coating
    AlexNet training and validation curves
    Training and validation metrics. (a) VGG; (b) ResNet; (c) EfficientNet
    Confusion matrixes of classification results. (a) VGG-16; (b) ResNet-101; (c) EfficientNetV2-XL
    Confusion matrixes of validation set. (a) VGG-16; (b) ResNet-101; (c) EfficientNetV2-XL
    Heatmaps of different models. (a) Original image; (b) VGG-16; (c) ResNet-101; (d) EfficientNetV2-XL
    • Table 1. Dataset categories and quantities

      View table

      Table 1. Dataset categories and quantities

      CategoryQuantityCategory No.
      Total1327
      Normal1081
      Scratch3012
      Uneven powder coating3023
      Insufficient powder coating2954
      Excessive powder coating3215
    • Table 2. Model loss functions, optimizers, and initial learning rates

      View table

      Table 2. Model loss functions, optimizers, and initial learning rates

      ModelCriterionOptimizerLearning rate
      VGG-16Cross entropy lossAdam0.0001
      ResNet-101Cross entropy lossAdam0.0001
      EfficientNet-XLCross entropy lossSAM0.0001
    • Table 3. Comparison of classification results of validation set

      View table

      Table 3. Comparison of classification results of validation set

      Category No.VGG-16ResNet-101EfficientNetV2-XL
      PrecisionRecallF1-scorePrecisionRecallF1-scorePrecisionRecallF1-score
      11.00001.00001.00001.00001.00001.00001.00001.00001.0000
      21.00001.00001.00001.00001.00001.00001.00001.00001.0000
      31.00001.00001.00001.00001.00001.00001.00000.98410.9919
      41.00000.98310.99151.00000.98310.99151.00001.00001.0000
      50.98511.00000.99250.98511.00000.99250.98461.00000.9923
      Accuracy0.99630.99630.9963
      Macro average0.99700.99660.99680.99700.99660.99680.99690.99680.9968
      Weighted average0.99640.99630.99630.99640.99630.99630.99640.99630.9963
    • Table 4. Comparison of classification results of test set

      View table

      Table 4. Comparison of classification results of test set

      Category No.VGG-16ResNet-101EfficientNetV2-XLQuantity
      PrecisionRecallF1-scorePrecisionRecallF1-scorePrecisionRecallF1-score
      21.0000.9000.9471.0000.9670.9831.0000.9670.98330
      30.7221.0000.8390.6320.9230.7500.5911.0000.74313
      41.0000.7000.8241.0000.5000.6671.0000.6500.78820
      50.9301.0000.9640.9141.0000.9551.0000.9810.99053
      Accuracy0.9220.8970.922
      Macro average0.9130.9000.8930.8860.8470.8390.8980.8990.876
      Weighted average0.9370.9220.9210.9190.8970.8900.9540.9220.926
    • Table 5. Testing results with datasets collected from other devices

      View table

      Table 5. Testing results with datasets collected from other devices

      ModelPrecisionRecallF1-scoreNumber of Samples
      VGG-160.9020.5000.63266
      ResNet-1010.3210.3640.31266
      EfficientNetV2-XL0.7850.5610.65366
    • Table 6. Comparison of model performance

      View table

      Table 6. Comparison of model performance

      ModelSize /MBTest set accuracy /%Inference time of test set based on Tesla T4 /sFrame rate /(frame/s)
      EfficientNetV2-XL792.792.26.8416.96
      VGG-16512.392.21.7068.24
      ResNet-101162.889.72.5445.67
    Tools

    Get Citation

    Copy Citation Text

    Mingyi Zuo, Hongxuan Guo, Huaixue Li. Deep Learning‐Based Recognition Method for Powder Spreading State in Additive Manufacturing[J]. Chinese Journal of Lasers, 2025, 52(8): 0802301

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Additive Manufacturing

    Received: Aug. 23, 2024

    Accepted: Nov. 25, 2024

    Published Online: Apr. 2, 2025

    The Author Email: Huaixue Li (LHX1022@126.com)

    DOI:10.3788/CJL241164

    CSTR:32183.14.CJL241164

    Topics