Chinese Journal of Ship Research, Volume. 20, Issue 2, 107(2025)

A rolling bearing life prediction method based on multi-task gated networks

Liuyang SONG1,2, Chuanhao ZHENG1, Ye JIN1, Tianjiao LIN1, Changkun HAN1, and Huaqing WANG1,2
Author Affiliations
  • 1Beijing Key Laboratory of Health Monitoring and Self Recovery for High-End Mechanical Equipment, Beijing University of Chemical Technology, Beijing 100029
  • 2National Key Laboratory of High-end Compressor and System Technology, Beijing University of Chemical Technology, Beijing 100029
  • show less
    Figures & Tables(29)
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    • Table 1. Hyperparameter settings of multitasking model

      View table
      View in Article

      Table 1. Hyperparameter settings of multitasking model

      序号类型参数
      1初始学习率0.01
      2优化器Adam
      3输入层(None,1)
      4BiGRU1(None,16)
      5BiGRU2(None,32)
      6编码器的线性层1(None,64)
      7编码器的线性层2(None,32)
      8编码器的线性层3(None,20)
      9采样层的均值和方差(None,10)
      10解码器的线性层1(None,128)
      11解码器的线性层2(None,32)
      12MMoE的8个专家层(None,4)
      13HS评估的线性层1(None,32)
      14HS评估的线性层2(None,16)
      15HS评估的线性层3(None,2)
      16RUL预测的线性层1(None,32)
      17RUL预测的线性层2(None,16)
      18RUL预测的线性层3(None,1)
    • Table 2. Description of the XJTU-SY bearing dataset

      View table
      View in Article

      Table 2. Description of the XJTU-SY bearing dataset

      数据组运行工况
      轴承1_1,轴承1_2,轴承1_3,轴承1_4,轴承1_52 100 r/min,12 kN
      轴承2_1,轴承2_2,轴承2_3,轴承2_4,轴承2_52 250 r/min,11 kN
      轴承3_1,轴承3_2,轴承3_3,轴承3_4,轴承3_52 400 r/min,10 kN
    • Table 3. Time-domain statistical features

      View table
      View in Article

      Table 3. Time-domain statistical features

      序号统计特征公 式
      1平均值$\bar x = \dfrac{1}{N}\displaystyle\sum\limits_{n = 1}^N {x(n)} $
      2方差$ \delta = \dfrac{1}{N}\displaystyle\sum\limits_{n - 1}^N {{{[x(n) - \bar x]}^2}} $
      3绝对平均值$|\bar x| = \dfrac{1}{N}\displaystyle\sum\limits_{n = 1}^N {|{x_n}|} $
      4标准差${\sigma _x} = \sqrt {\dfrac{1}{N}\displaystyle\sum\limits_{n = 1}^N {{{[x(n) - \bar x]}^2}} } $
      5平方根幅值${x_{\text{f}}} = {\left(\dfrac{1}{N}\displaystyle\sum\limits_{n = 1}^N {\sqrt {|x(n)|} } \right)^2}$
      6均方值${x^2}_{{\text{rms}}} = \dfrac{1}{N}\displaystyle\sum\limits_{n = 1}^N {{x^2}(n)} $
      7均方根值$ {x_{{\text{rms}}}} = \sqrt {\dfrac{1}{N}\displaystyle\sum\limits_{n = 1}^N {{x^2}(n)} } $
      8最大值${x_{\max }} = \max (x(n))$
      9最小值${x_{\min }} = \min (x(n))$
      10峰值${x_{\text{p}}} = \max |x(n)|$
      11波形指标$ W = {x_{{\text{rms}}}}/\left| {\bar x} \right| $
      12峰值指标$C = {x_{\text{p}}}/{x_{{\text{rms}}}}$
      13脉冲指标$I = {x_{\text{p}}}/\left| {\bar x} \right|$
      14裕度指标$ L = {x_{\text{p}}}/{x_{\text{f}}} $
      15峭度指标$S = \displaystyle\sum\limits_{n = 1}^N {{{[x(n) - \bar x]}^4}} /(N - 1)\sigma _x^4$
    • Table 4. MAE results of bearing dataset

      View table
      View in Article

      Table 4. MAE results of bearing dataset

      方法eMAE平均
      轴承1_2轴承2_2轴承2_5
      CNN0.1120.1520.0540.106
      GRU0.0460.0730.0520.057
      LSTM0.0720.0690.0260.056
      CNN-LSTM0.1150.1410.0700.109
      SARN0.1040.1170.0540.091
      多任务模型0.0210.0260.0160.021
    • Table 5. RMSE results of bearing dataset

      View table
      View in Article

      Table 5. RMSE results of bearing dataset

      方法eRMSE平均
      轴承1_2轴承2_2轴承2_5
      CNN0.1650.2470.0860.166
      GRU0.0740.1030.0760.084
      LSTM0.1020.1140.0450.087
      CNN-LSTM0.1730.2150.0880.159
      SARN0.1710.1730.0930.146
      多任务模型0.0280.0350.0220.028
    • Table 6. MAE results of ablation experiments for bearing dataset

      View table
      View in Article

      Table 6. MAE results of ablation experiments for bearing dataset

      方法eMAE平均
      轴承1_2轴承2_2
      消融模型0.0480.0390.043
      完整模型0.0210.0260.023
    • Table 7. RMSE results of ablation experiments for bearing dataset

      View table
      View in Article

      Table 7. RMSE results of ablation experiments for bearing dataset

      方法eRMSE平均
      轴承1_2轴承2_2
      消融模型0.0740.0500.062
      完整模型0.0270.0340.031
    • Table 8. MAE results for bearing dataset

      View table
      View in Article

      Table 8. MAE results for bearing dataset

      方法eMAE平均
      轴承1_2轴承2_2
      GRU0.1120.0800.096
      LSTM0.1640.0110.088
      多任务模型0.0410.0280.035
    • Table 9. RMSE results FOR bearing dataset

      View table
      View in Article

      Table 9. RMSE results FOR bearing dataset

      方法eRMSE平均
      轴承1_2轴承2_2
      GRU0.1880.1160.152
      LSTM0.1840.1210.153
      多任务模型0.0530.0370.045
    Tools

    Get Citation

    Copy Citation Text

    Liuyang SONG, Chuanhao ZHENG, Ye JIN, Tianjiao LIN, Changkun HAN, Huaqing WANG. A rolling bearing life prediction method based on multi-task gated networks[J]. Chinese Journal of Ship Research, 2025, 20(2): 107

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Ship Intelligent O&M, and Fault Diagnosis

    Received: Jun. 3, 2024

    Accepted: Dec. 25, 2024

    Published Online: May. 15, 2025

    The Author Email:

    DOI:10.19693/j.issn.1673-3185.03962

    Topics