Chinese Optics, Volume. 15, Issue 4, 761(2022)
Optical design of space gravitational wave detection telescope
[1] LUO Z R, BAI SH, BIAN X, . Gravitational wave detection by space laser interferometry[J]. Advances in Mechanics, 43, 415-447(2013).
[2] ABBOTT B P, ABBOTT R, ABBOTT T D, et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 116, 061102(2016).
[3] WANG ZH, MA J, LI J Q. Space-based gravitational wave detection mission: design highlights of LISA system[J]. Chinese Optics, 8, 980-987(2015).
[4] WANG L Y, LI Y Q, CAI R. Noise suppression of laser jitter in space laser interferometer[J]. Chinese Optics, 14, 1426-1434(2021).
[5] WANG D F, YAO X, JIAO ZH K, . Time-delay interferometry for space-based gravitational wave detection[J]. Chinese Optics, 14, 275-288(2021).
[6] DANZMANN K, The LISA Study Team. LISA: laser interferometer space antenna for gravitational wave measurements[J]. Classical and Quantum Gravity, 13, A247-A250(1996).
[7] LUO Z R, GUO Z K, JIN G, et al. A brief analysis to Taiji: science and technology[J]. Results in Physics, 16, 102918(2020).
[8] LUO J, CHEN L SH, DUAN H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 33, 035010(2016).
[9] DONG Y H, LIU H SH, LUO Z R, et al. A comprehensive simulation of weak-light phase-locking for space-borne gravitational wave antenna[J]. Science China Technological Sciences, 59, 730-737(2016).
[10] CHWALLA M, DANZMANN K, BARRANCO G F, et al. Design and construction of an optical test bed for LISA imaging systems and tilt-to-length coupling[J]. Classical and Quantum Gravity, 33, 245015(2016).
[11] SUTTON A, MCKENZIE K, WARE B, et al. Laser ranging and communications for LISA[J]. Optics Express, 18, 20759-20773(2010).
[12] SCHUSTER S, WANNER G, TRÖBS M, et al. Vanishing tilt-to-length coupling for a singular case in two-beam laser interferometers with Gaussian beams[J]. Applied Optics, 54, 1010-1014(2015).
[13] SASSO C P, MANA G, MOTTINI S. Coupling of wavefront errors and pointing jitter in the LISA interferometer: misalignment of the interfering wavefronts[J]. Classical and Quantum Gravity, 35, 245002(2018).
[14] ZHAO Y, SHEN J, FANG CH, et al. Tilt-to-length noise coupled by wavefront errors in the interfering beams for the space measurement of gravitational waves[J]. Optics Express, 28, 25545-25561(2020).
[15] ZHAO Y, SHEN J, FANG CH, et al. Far-field optical path noise coupled with the pointing jitter in the space measurement of gravitational waves[J]. Applied Optics, 60, 438-444(2021).
[16] WANG ZH, SHA W, CHEN ZH, . Preliminary design and analysis of telescope for space gravitational wave detection[J]. Chinese Optics, 11, 131-151(2018).
[17] LI Y P, WANG ZH, SHA W, . Structural design of primary mirror subassembly for spatial gravitational wave telescope[J]. Infrared and Laser Engineering, 47, 0818004(2018).
[18] CHEN SH N, JIANG H L, WANG CH Y, . Design of off-axis four-mirror afocal optical system with high magnification[J]. Chinese Optics, 13, 179-188(2020).
Get Citation
Copy Citation Text
Jian-cong LI, Hong-an LIN, Jia-xiong LUO, Yan-xiong WU, Zhi WANG. Optical design of space gravitational wave detection telescope[J]. Chinese Optics, 2022, 15(4): 761
Category: Original Article
Received: Jan. 22, 2022
Accepted: Mar. 22, 2022
Published Online: Sep. 6, 2022
The Author Email: