Opto-Electronic Engineering, Volume. 50, Issue 8, 220284(2023)
Switchable edge detection and imaging based on a phase-change metasurface with Ge2Sb2Se4Te1
[1] Kwon H, Sounas D, Cordaro A et al. Nonlocal metasurfaces for optical signal processing[J]. Phys Rev Lett, 121, 173004(2018).
[2] Davis T J, Eftekhari F, Gómez D E et al. Metasurfaces with asymmetric optical transfer functions for optical signal processing[J]. Phys Rev Lett, 123, 013901(2019).
[3] Solli D R, Jalali B. Analog optical computing[J]. Nat Photonics, 9, 704-706(2015).
[4] Zhu T F, Lou Y J, Zhou Y H et al. Generalized spatial differentiation from the spin hall effect of light and its application in image processing of edge detection[J]. Phys Rev Appl, 11, 034043(2019).
[5] Mueller J P B, Rubin N A, Devlin R C et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Phys Rev Lett, 118, 113901(2017).
[6] Chen W T, Zhu A Y, Capasso F. Flat optics with dispersion-engineered metasurfaces[J]. Nat Rev Mater, 5, 604-620(2020).
[7] Huang Y J, Xiao T X, Xie Z W et al. Single-layered phase-change metasurfaces achieving efficient wavefront manipulation and reversible chiral transmission[J]. Opt Express, 30, 1337-1350(2022).
[8] Huang Y J, Xiao T X, Xie Z W et al. Multistate nonvolatile metamirrors with tunable optical chirality[J]. ACS Appl Mater Interfaces, 13, 45890-45897(2021).
[9] Huang Y J, Xiao T X, Xie Z W et al. Single-layered reflective metasurface achieving simultaneous spin-selective perfect absorption and efficient wavefront manipulation[J]. Adv Opt Mater, 9, 2001663(2021).
[10] Zhang Y X, Pu M B, Jin J J et al. Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization[J]. Opto-Electron Adv, 5, 220058(2022).
[11] Li J T, Wang G C, Yue Z et al. Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization[J]. Opto-Electron Adv, 5, 210062(2022).
[12] Wang Y L, Fan Q B, Xu T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture[J]. Opto-Electron Adv, 4, 200008(2021).
[13] Yue Z, Li J T, Li J et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion[J]. Opto-Electron Sci, 1, 210014(2022).
[14] Lan X, Deng Q R, Zhang W T et al. Efficient chiral absorber based on twisted catenary structure[J]. Opto-Electron Eng, 49, 220157(2022).
[15] Yang R, Yu Q Q, Pan Y W et al. Directional-multiplexing holography by on-chip metasurface[J]. Opto-Electron Eng, 49, 220177(2022).
[16] Huang Y J, Xiao T X, Chen S et al. All-optical controlled-NOT logic gate achieving directional asymmetric transmission based on metasurface doublet[J]. Opto-Electron Adv, 6, 220073(2023).
[17] Zheng G X, Mühlenbernd H, Kenney M et al. Metasurface holograms reaching 80% efficiency[J]. Nat Nanotechnol, 10, 308-312(2015).
[18] Li X, Chen L W, Li Y et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Sci Adv, 2, e1601102(2016).
[19] Xie X, Liu K P, Pu M B et al. All-metallic geometric metasurfaces for broadband and high-efficiency wavefront manipulation[J]. Nanophotonics, 9, 3209-3215(2020).
[20] Tang Z Y, Li L, Zhang H C et al. Multifunctional Janus metasurfaces achieving arbitrary wavefront manipulation at dual frequency[J]. Mater Des, 223, 111264(2022).
[21] Xu K, Wang X E, Fan X H et al. Meta-holography: from concept to realization[J]. Opto-Electron Eng, 49, 220183(2022).
[22] Devlin R C, Ambrosio A, Rubin N A et al. Arbitrary spin-to–orbital angular momentum conversion of light[J]. Science, 358, 896-901(2017).
[23] Li Q T, Dong F L, Wang B et al. Free-space optical beam tapping with an all-silica metasurface[J]. ACS Photonics, 4, 2544-2549(2017).
[24] Chen W T, Zhu A Y, Sanjeev V et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nat Nanotechnol, 13, 220-226(2018).
[25] Wang S M, Wu P C, Su V C et al. A broadband achromatic metalens in the visible[J]. Nat Nanotechnol, 13, 227-232(2018).
[26] Cai W S, Chettiar U K, Kildishev A V et al. Optical cloaking with metamaterials[J]. Nat Photonics, 1, 224-227(2007).
[27] Xie X, Li X, Pu M B et al. Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion[J]. Adv Funct Mater, 28, 1706673(2018).
[28] Zhou Y, Wu W H, Chen R et al. Analog optical spatial differentiators based on dielectric metasurfaces[J]. Adv Opt Mater, 8, 1901523(2020).
[29] Cordaro A, Kwon H, Sounas D et al. High-index dielectric metasurfaces performing mathematical operations[J]. Nano Lett, 19, 8418-8423(2019).
[30] Dong Z W, Si J N, Yu X Y et al. Optical spatial differentiator based on subwavelength high-contrast gratings[J]. Appl Phys Lett, 112, 181102(2018).
[31] Zhou Y, Zheng H Y, Kravchenko I I et al. Flat optics for image differentiation[J]. Nat Photonics, 14, 316-323(2020).
[32] Wan L, Pan D P, Yang S F et al. Optical analog computing of spatial differentiation and edge detection with dielectric metasurfaces[J]. Opt Lett, 45, 2070-2073(2020).
[33] Huo P C, Zhang C, Zhu W Q et al. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging[J]. Nano Lett, 20, 2791-2798(2020).
[34] He Q, Zhang F, Pu M B et al. Monolithic metasurface spatial differentiator enabled by asymmetric photonic spin-orbit interactions[J]. Nanophotonics, 10, 741-748(2021).
[35] Shaltout A M, Shalaev V M, Brongersma M L. Spatiotemporal light control with active metasurfaces[J]. Science, 364, eaat3100(2019).
[36] Chang C M, Chu C H, Tseng M L et al. Local electrical characterization of laser-recorded phase-change marks on amorphous Ge2Sb2Te5 thin films[J]. Opt Express, 19, 9492-9504(2011).
[37] Chen Y G, Kao T S, Ng B et al. Hybrid phase-change plasmonic crystals for active tuning of lattice resonances[J]. Opt Express, 21, 13691-13698(2013).
[38] Yamada N. Origin, secret, and application of the ideal phase-change material GeSbTe[J]. Phys Status Solidi, 249, 1837-1842(2012).
[39] Loke D, Lee T H, Wang W J et al. Breaking the speed limits of phase-change memory[J]. Science, 336, 1566-1569(2012).
[40] Michel A K U, Zalden P, Chigrin D N et al. Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses[J]. ACS Photonics, 1, 833-839(2014).
[41] Wang Q, Rogers E T F, Gholipour B et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nat Photonics, 10, 60-65(2016).
[42] Du K K, Li Q, Lyu Y B et al. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST[J]. Light Sci Appl, 6, e16194(2017).
[43] Zhang Y F, Chou J B, Li J Y et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics[J]. Nat Commun, 10, 4279(2019).
[44] Arbabi A, Horie Y, Bagheri M et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nat Nanotechnol, 10, 937-943(2015).
[45] Bliokh K Y, Rodríguez-Fortuño F J, Nori F et al. Spin–orbit interactions of light[J]. Nat Photonics, 9, 796-808(2015).
[46] Zhang F, Pu M B, Luo J et al. Symmetry breaking of photonic spin‐orbit interactions in metasurfaces[J]. Opto-Electron Eng, 44, 319-325(2017).
[47] Yang H, Xie Z W, He H R et al. Switchable imaging between edge-enhanced and bright-field based on a phase-change metasurface[J]. Opt Lett, 46, 3741-3744(2021).
[48] Zhou J X, Qian H L, Chen C F et al. Optical edge detection based on high-efficiency dielectric metasurface[J]. Proc Natl Acad Sci USA, 116, 11137-11140(2019).
Get Citation
Copy Citation Text
Jie Hu, Ziyi Tang, Xiang Lan, Qinrong Deng, Wenting Zhang, Yijia Huang, Ling Li. Switchable edge detection and imaging based on a phase-change metasurface with Ge2Sb2Se4Te1[J]. Opto-Electronic Engineering, 2023, 50(8): 220284
Category: Article
Received: Nov. 1, 2022
Accepted: Jan. 31, 2023
Published Online: Nov. 15, 2023
The Author Email: